Personalized tag recommendation via denoising auto-encoder

被引:5
|
作者
Zhao, Weibin [1 ]
Shang, Lin [1 ]
Yu, Yonghong [2 ]
Zhang, Li [3 ]
Wang, Can [4 ]
Chen, Jiajun [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, TongDa Coll, Yangzhou, Jiangsu, Peoples R China
[3] Royal Holloway Univ London, Dept Comp Sci, Surrey, England
[4] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld, Australia
关键词
Recommender systems; Auto-encoder; Personalized tag recommendation;
D O I
10.1007/s11280-021-00967-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personalized tag recommender systems automatically recommend users a set of tags used to annotate items according to users' past tagging information. Learning the representations of involved entities (i.e. users, items and tags) and capturing the complex relationships among them are crucial for personalized tag recommender systems. However, few studies have been conducted to simultaneously achieve these two sub-goals. In this research, we propose a novel personalized tag recommendation model based on the denoising auto-encoder, namely DAE-PTR, which learns the representations of entities and encodes the complex relationships by exploiting the denoising auto-encoder framework. Specifically, for each user, we firstly generate the corrupted version of the respective tagging information by adding the multiplicative mask-out/drop-out noise into the original input. Then, we learn the latent representations from the corrupted input via the auto-encoder framework by using the cross-entropy loss. More importantly, we integrate the latent user and item embeddings into the processing of encoding, which makes the learnt hidden representations of the auto-encoder network encode multiple types of relationships among entities, i.e. the relationships between users and tags, between items and tags, and among tags. Finally, we employ the decoder component to reconstruct the original input based on the learnt latent representations. Experimental results on the real-world datasets show that our proposed DAE-PTR model is superior to the traditional personalized tag recommendation models.
引用
下载
收藏
页码:95 / 114
页数:20
相关论文
共 50 条
  • [41] Evacuation route recommendation using auto-encoder and Markov decision process
    Bi, Chongke
    Pan, Guosheng
    Yang, Lu
    Lin, Chun-Cheng
    Hou, Min
    Huang, Yuanqi
    APPLIED SOFT COMPUTING, 2019, 84
  • [42] Implicit relation-aware social recommendation with variational auto-encoder
    Zheng, Qiqi
    Liu, Guanfeng
    Liu, An
    Li, Zhixu
    Zheng, Kai
    Zhao, Lei
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (05): : 1395 - 1410
  • [43] MOTION DETECTION VIA A COUPLE OF AUTO-ENCODER NETWORKS
    Xu, Pei
    Ye, Mao
    Liu, Qihe
    Li, Xudong
    Pei, Lishen
    Ding, Jian
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [44] Disentangled variational auto-encoder enhanced by counterfactual data for debiasing recommendation
    Guo, Yupu
    Cai, Fei
    Zheng, Jianming
    Zhang, Xin
    Chen, Honghui
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 3119 - 3132
  • [45] Symbolic expression generation via variational auto-encoder
    Popov, Sergei
    Lazarev, Mikhail
    Belavin, Vladislav
    Derkach, Denis
    Ustyuzhanin, Andrey
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [46] Symbolic expression generation via variational auto-encoder
    Popov S.
    Lazarev M.
    Belavin V.
    Derkach D.
    Ustyuzhanin A.
    PeerJ Computer Science, 2023, 9
  • [47] Compressed Sensing via a Deep Convolutional Auto-encoder
    Wu, Hao
    Zheng, Ziyang
    Li, Yong
    Dai, Wenrui
    Xiong, Hongkai
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [48] Modeling Password Guessability via Variational Auto-Encoder
    Wang, Jinwei
    Li, Yong
    Chen, Xi
    Zhou, Yongbin
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 348 - 353
  • [49] Unsupervised feature selection via transformed auto-encoder
    Zhang, Yunhe
    Lu, Zhoumin
    Wang, Shiping
    KNOWLEDGE-BASED SYSTEMS, 2021, 215 (215)
  • [50] Personalized tag recommendation via adversarial learning
    Jiang, Fengyixin
    Yu, Yonghong
    Zhao, Weibin
    Zhang, Li
    Jiang, Jing
    Wang, Qiang
    Chen, Xuewen
    Huang, Guangsong
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 923 - 930