Personalized tag recommendation via adversarial learning

被引:0
|
作者
Jiang, Fengyixin [1 ]
Yu, Yonghong [1 ]
Zhao, Weibin [1 ]
Zhang, Li [2 ]
Jiang, Jing [1 ]
Wang, Qiang [1 ]
Chen, Xuewen [1 ]
Huang, Guangsong [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Tongda Coll, Nanjing, Jiangsu, Peoples R China
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Personalized tag recommendation; Adversarial learning; Pairwise interaction tensor factorization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personalized tag recommender systems are crucial for collaborative tagging systems. However, traditional personalized tag recommendation models tend to usually vulnerable to adversarial perturbations on their model parameters, which leads to poor generalization performance. In this paper, we propose an adversarial learning based personalized tag recommendation method, which integrates adversarial learning into the classic pairwise interaction tensor factorization model. Specifically, we integrate adversarial perturbations into the embedded representations of users, items and tags, and minimize the objective function of the pairwise interaction tensor factorization model with the perturbed parameters to increase the robustness of underlying factorization model. Experimental results on real world datasets show that our proposed adversarial learning based personalized tag recommendation model outperforms traditional tag recommendation models.
引用
收藏
页码:923 / 930
页数:8
相关论文
共 50 条
  • [1] Adversarial Learning for Personalized Tag Recommendation
    Quintanilla, Erik
    Rawat, Yogesh
    Sakryukin, Andrey
    Shah, Mubarak
    Kankanhalli, Mohan
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1083 - 1094
  • [2] Personalized Deep Learning for Tag Recommendation
    Nguyen, Hanh T. H.
    Wistuba, Martin
    Grabocka, Josif
    Drumond, Lucas Rego
    Schmidt-Thieme, Lars
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT I, 2017, 10234 : 186 - 197
  • [3] Metric learning with adversarial hard negative samples for tag recommendation
    Wang, Jinglong
    Chen, Gui
    Xin, Kai
    Fei, Zhengshun
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 21475 - 21507
  • [4] Personalized tag recommendation via denoising auto-encoder
    Weibin Zhao
    Lin Shang
    Yonghong Yu
    Li Zhang
    Can Wang
    Jiajun Chen
    [J]. World Wide Web, 2023, 26 : 95 - 114
  • [5] Personalized tag recommendation via denoising auto-encoder
    Zhao, Weibin
    Shang, Lin
    Yu, Yonghong
    Zhang, Li
    Wang, Can
    Chen, Jiajun
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (01): : 95 - 114
  • [6] Hyperbolic Personalized Tag Recommendation
    Zhao, Weibin
    Zhang, Aoran
    Shang, Lin
    Yu, Yonghong
    Zhang, Li
    Wang, Can
    Chen, Jiajun
    Yin, Hongzhi
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 216 - 231
  • [7] Personalized Tag Recommendation for Images Using Deep Transfer Learning
    Nguyen, Hanh T. H.
    Wistuba, Martin
    Schmidt-Thieme, Lars
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 705 - 720
  • [8] The Idiosyncratic Effects of Adversarial Training on Bias in Personalized Recommendation Learning
    Anelli, Vito Walter
    Di Noia, Tommaso
    Merra, Felice Antonio
    [J]. 15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021), 2021, : 730 - 735
  • [9] Adversarial Personalized Ranking for Recommendation
    He, Xiangnan
    He, Zhankui
    Du, Xiaoyu
    Chua, Tat-Seng
    [J]. ACM/SIGIR PROCEEDINGS 2018, 2018, : 355 - 364
  • [10] Personalized style recommendation via reinforcement learning
    Luo, Jiyun
    Hazra, Kurchi Subhra
    Huo, Wenyu
    Li, Rui
    Mahabal, Abhijit
    [J]. COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 290 - 293