Diabetic retinopathy detection using convolutional neural network with residual blocks

被引:0
|
作者
Kommaraju, Rajasekhar [1 ]
Anbarasi, M. S. [1 ]
机构
[1] Puducherry Technol Univ, Dept Informat Technol, Pondicherry, India
关键词
Deep learning; Diabetic retinopathy; Convolutional neural network; Residual network; SYSTEM;
D O I
10.1016/j.bspc.2023.105494
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic Retinopathy (DR) is a disease that happens in the patient eyes of long-term diabetics. It also affects the retina which causes eye blindness. Therefore, DR has to be detected at its early stage to decrease the risk of blindness. Several researchers suggested approaches to detect the blood abnormalities (hemorrhages, Hard and soft exudates, and micro-aneurysms) in the retina images using deep learning models. The limitation with these approaches is the performance degradation and required high training time. To solve this, we suggest a model for automated detection of DR severity using a convolutional neural network (CNN) and residual blocks (DRCNNRB). Deep learning models work effectively when they have been trained on vast datasets. Data Augmentation helps to increase the training samples as a result avoids the data imbalance problem. In our model, basic data augmentation techniques such as zooming, shearing, rotation, flipping, and rescaling are applied in DRCNNRB to solve the data imbalance problem. Pre-processing techniques are used to enhance the quality of the image. Extensive experimental results on the Diabetic Retinopathy 2015 Data Colored Resized database conclude that DRCNNRB provides better performance compared to other state-of-the-art works. Thus, DRCNNRB achieves better efficiency for real-time diagnosis.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] A hybrid convolutional neural network model for detection of diabetic retinopathy
    Alshawabkeh, Musa
    Ryalat, Mohammad Hashem
    Dorgham, Osama M.
    Alkharabsheh, Khalid
    Btoush, Mohammad Hjouj
    Alazab, Mamoun
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2022, 70 (3-4) : 179 - 196
  • [12] Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images
    Garcia, Gabriel
    Gallardo, Jhair
    Mauricio, Antoni
    Lopez, Jorge
    Del Carpio, Christian
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 635 - 642
  • [13] An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network
    Hemanth, D. Jude
    Deperlioglu, Omer
    Kose, Utku
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03): : 707 - 721
  • [14] Diabetic retinopathy detection from image to classification using deep convolutional neural network
    Varnousfaderani, Ehsan Shahrian
    Belghith, Akram
    Yousefi, Siamak
    Merkow, Jameson
    Tu Zhuowen
    Bowd, Christopher
    Zangwill, Linda M.
    Goldbaum, Michael Henry
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [15] Diabetic Retinopathy Classification Using an Efficient Convolutional Neural Network
    Gao, Jiaxi
    Leung, Cyril
    Miao, Chunyan
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 80 - 85
  • [16] Classification for diabetic retinopathy by using staged convolutional neural network
    Wang, Hongqiu
    Sun, Yingxue
    Cao, Yunjian
    Ouyang, Ganlu
    Wang, Xin
    Wu, Shaozhi
    Tian, Miao
    [J]. 2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 228 - 233
  • [17] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [18] ResNet-34/DR: A Residual Convolutional Neural Network for the Diagnosis of Diabetic Retinopathy
    Al-Moosawi, Noor M.
    Khudeyer, Raidah S.
    [J]. INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2021, 45 (07): : 115 - 124
  • [19] Detection of Diabetic Retinopathy using Deep Neural Network
    Chen, HaiQuan
    Zeng, XiangLong
    Luo, Yuan
    Ye, WenBin
    [J]. 2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [20] Diabetic Retinopathy Detection using feedforward Neural Network
    Yadav, Jayant
    Sharma, Manish
    Saxena, Vikas
    [J]. 2017 TENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2017, : 363 - 365