An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network

被引:142
|
作者
Hemanth, D. Jude [1 ]
Deperlioglu, Omer [2 ]
Kose, Utku [3 ]
机构
[1] Karunya Inst Technol & Sci, Dept ECE, Coimbatore, Tamil Nadu, India
[2] Afyon Kocatepe Univ, Dept Comp Technol, Afyon, Turkey
[3] Suleyman Demirel Univ, Dept Comp Engn, Isparta, Turkey
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 03期
关键词
Diabetic retinopathy; Image processing; Deep learning; Convolutional neural network; ARTIFICIAL-INTELLIGENCE; OPTIMIZATION; SYSTEM; DIAGNOSIS; FEATURES; HEALTH;
D O I
10.1007/s00521-018-03974-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this study is to propose an alternative, hybrid solution method for diagnosing diabetic retinopathy from retinal fundus images. In detail, the hybrid method is based on using both image processing and deep learning for improved results. In medical image processing, reliable diabetic retinopathy detection from digital fundus images is known as an open problem and needs alternative solutions to be developed. In this context, manual interpretation of retinal fundus images requires the magnitude of work, expertise, and over-processing time. So, doctors need support from imaging and computer vision systems and the next step is widely associated with use of intelligent diagnosis systems. The solution method proposed in this study includes employment of image processing with histogram equalization, and the contrast limited adaptive histogram equalization techniques. Next, the diagnosis is performed by the classification of a convolutional neural network. The method was validated using 400 retinal fundus images within the MESSIDOR database, and average values for different performance evaluation parameters were obtained as accuracy 97%, sensitivity (recall) 94%, specificity 98%, precision 94%, FScore 94%, and GMean 95%. In addition to those results, a general comparison of with some previously carried out studies has also shown that the introduced method is efficient and successful enough at diagnosing diabetic retinopathy from retinal fundus images. By employing the related image processing techniques and deep learning for diagnosing diabetic retinopathy, the proposed method and the research results are valuable contributions to the associated literature.
引用
收藏
页码:707 / 721
页数:15
相关论文
共 50 条
  • [1] Retraction Note: An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network
    D. Jude Hemanth
    Omer Deperlioglu
    Utku Kose
    [J]. Neural Computing and Applications, 2024, 36 (20) : 12627 - 12627
  • [2] Diabetic retinopathy detection from image to classification using deep convolutional neural network
    Varnousfaderani, Ehsan Shahrian
    Belghith, Akram
    Yousefi, Siamak
    Merkow, Jameson
    Tu Zhuowen
    Bowd, Christopher
    Zangwill, Linda M.
    Goldbaum, Michael Henry
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [3] Early Detection of Diabetic Retinopathy Using Deep Convolutional Neural Network
    Kannan, Rajeswari
    Vispute, S. R.
    Kharat, Reena
    Salunkhe, Dipti
    Vivekanandan, N.
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (03): : 1283 - 1292
  • [4] A Novel Diabetic Retinopathy Detection Approach Based on Deep Symmetric Convolutional Neural Network
    Liu, Tieyuan
    Chen, Yi
    Shen, Hongjie
    Zhou, Rupeng
    Zhang, Meng
    Liu, Tonglai
    Liu, Jin
    [J]. IEEE ACCESS, 2021, 9 : 160552 - 160558
  • [5] Diabetic Retinopathy Classification Using an Efficient Convolutional Neural Network
    Gao, Jiaxi
    Leung, Cyril
    Miao, Chunyan
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 80 - 85
  • [6] Classification for diabetic retinopathy by using staged convolutional neural network
    Wang, Hongqiu
    Sun, Yingxue
    Cao, Yunjian
    Ouyang, Ganlu
    Wang, Xin
    Wu, Shaozhi
    Tian, Miao
    [J]. 2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 228 - 233
  • [7] A Transfer Learning Approach for Diabetic Retinopathy Classification Using Deep Convolutional Neural Networks
    Krishnan, Arvind Sai
    Clive, Derik R.
    Bhat, Vilas
    Ramteke, Pravin Bhaskar
    Koolagudi, Shashidhar G.
    [J]. IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [8] Deep convolutional neural networks for diabetic retinopathy detection by image classification
    Wan, Shaohua
    Liang, Yan
    Zhang, Yin
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 72 : 274 - 282
  • [9] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [10] Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network
    Pao, Shu-, I
    Lin, Hong-Zin
    Chien, Ke-Hung
    Tai, Ming-Cheng
    Chen, Jiann-Torng
    Lin, Gen-Min
    [J]. JOURNAL OF OPHTHALMOLOGY, 2020, 2020