Prime editing using CRISPR-Cas12a and circular RNAs in human cells (vol 42, pg 1867, 2024)

被引:0
|
作者
Liang, Ronghong [1 ]
He, Zixin [1 ,2 ]
Zhao, Kevin Tianmeng [3 ]
Zhu, Haocheng [1 ,2 ]
Hu, Jiacheng [1 ]
Liu, Guanwen [1 ]
Gao, Qiang [3 ]
Liu, Meiyan [1 ,2 ]
Zhang, Rui [1 ]
Qiu, Jin-Long [4 ,5 ]
Gao, Caixia [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Genome Editing, New Cornerstone Sci Lab, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing, Peoples R China
[3] Qi Biodesign, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Microbiol, State Key Lab Plant Genom, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Biot Interact, Beijing, Peoples R China
关键词
D O I
10.1038/s41587-024-02160-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome editing with prime editors based on CRISPR-Cas9 is limited by the large size of the system and the requirement for a G/C-rich protospacer-adjacent motif (PAM) sequence. Here, we use the smaller Cas12a protein to develop four circular RNA-mediated prime editor (CPE) systems: nickase-dependent CPE (niCPE), nuclease-dependent CPE (nuCPE), split nickase-dependent CPE (sniCPE) and split nuclease-dependent CPE (snuCPE). CPE systems preferentially recognize T-rich genomic regions and possess a potential multiplexing capacity in comparison to corresponding Cas9-based systems. The efficiencies of the nuclease-based systems are up to 10.42%, whereas niCPE and sniCPE reach editing frequencies of up to 24.89% and 40.75% without positive selection in human cells, respectively. A derivative system, called one-sniCPE, combines all three RNA editing components under a single promoter. By arraying CRISPR RNAs for different targets in one circular RNA, we also demonstrate low-efficiency editing of up to four genes simultaneously with the nickase prime editors niCPE and sniCPE.
引用
收藏
页码:1921 / 1922
页数:2
相关论文
共 50 条
  • [31] Ultrasensitive and visual detection of human norovirus genotype GII.4 or GII.17 using CRISPR-Cas12a assay
    Qian, Weidong
    Huang, Jie
    Wang, Ting
    Fan, Cheng
    Kang, Jie
    Zhang, Qian
    Li, Yongdong
    Chen, Si
    VIROLOGY JOURNAL, 2022, 19 (01)
  • [32] Ultrasensitive and visual detection of human norovirus genotype GII.4 or GII.17 using CRISPR-Cas12a assay
    Weidong Qian
    Jie Huang
    Ting Wang
    Cheng Fan
    Jie Kang
    Qian Zhang
    Yongdong Li
    Si Chen
    Virology Journal, 19
  • [33] Automated CRISPR/Cas9-based genome editing of human pluripotent stem cells using the StemCellFactory
    Niessing, Bastian
    Breitkreuz, Yannik
    Elanzew, Andreas
    de Toledo, Marcelo A. S.
    Vajs, Peter
    Nolden, Marina
    Erkens, Frederik
    Wanek, Paul
    Yeung, Si Wah Christina Au
    Haupt, Simone
    Koenig, Niels
    Peitz, Michael
    Schmitt, Robert H.
    Zenke, Martin
    Bruestle, Oliver
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [34] Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9
    Yumlu, Saniye
    Stumm, Juergen
    Bashir, Sanum
    Dreyer, Anne-Kathrin
    Lisowski, Pawel
    Danner, Eric
    Kuehn, Ralf
    METHODS, 2017, 121 : 29 - 44
  • [35] Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing (vol 116, pg 1463, 2020)
    Wang, Liping
    Wang, Haojun
    Liu, Huayi
    Zhao, Qiyuan
    Liu, Bing
    Wang, Lian
    Zhang, Jun
    Zhu, Jie
    Bao, Rui
    Luo, Yunzi
    BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (09) : 2918 - 2918
  • [36] Highly efficient and safe genome editing by CRISPR-Cas12a using CRISPR RNA with a ribosyl-2′-O-methylated uridinylate-rich 3′-overhang in mouse zygotes
    Dae-In Ha
    Jeong Mi Lee
    Nan-Ee Lee
    Daesik Kim
    Jeong-Heon Ko
    Yong-Sam Kim
    Experimental & Molecular Medicine, 2020, 52 : 1823 - 1830
  • [37] Highly efficient and safe genome editing by CRISPR-Cas12a using CRISPR RNA with a ribosyl-2′-O-methylated uridinylate-rich 3′-overhang in mouse zygotes
    Ha, Dae-In
    Lee, Jeong Mi
    Lee, Nan-Ee
    Kim, Daesik
    Ko, Jeong-Heon
    Kim, Yong-Sam
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2020, 52 (11): : 1823 - 1830
  • [38] Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells
    Kruglova, Natalia
    Shepelev, Mikhail
    BIOMEDICINES, 2024, 12 (01)
  • [39] An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity (vol 19, pg 1384, 2023)
    Wu, Tong
    Liu, Chang
    Zou, Siyuan
    Lyu, Ruitu
    Yang, Bowei
    Yan, Hao
    Zhao, Minglei
    Tang, Weixin
    NATURE CHEMICAL BIOLOGY, 2024, 20 (01) : 129 - 129
  • [40] Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice (vol 11, pg 95, 2017)
    Li, Ling
    Song, Linjiang
    Liu, Xiaowei
    Yang, Xi
    Li, Xia
    He, Tao
    Wang, Ning
    Yang, Suleixin
    Yu, Chuan
    Yin, Tao
    Wen, Yanzhu
    He, Zhiyao
    Wei, Xiawei
    Su, Weijun
    Wu, Qinjie
    Yao, Shaohua
    Gong, Changyang
    Wei, Yuquan
    ACS NANO, 2019, 13 (08) : 9693 - 9693