Prime editing using CRISPR-Cas12a and circular RNAs in human cells (vol 42, pg 1867, 2024)

被引:0
|
作者
Liang, Ronghong [1 ]
He, Zixin [1 ,2 ]
Zhao, Kevin Tianmeng [3 ]
Zhu, Haocheng [1 ,2 ]
Hu, Jiacheng [1 ]
Liu, Guanwen [1 ]
Gao, Qiang [3 ]
Liu, Meiyan [1 ,2 ]
Zhang, Rui [1 ]
Qiu, Jin-Long [4 ,5 ]
Gao, Caixia [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Genome Editing, New Cornerstone Sci Lab, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing, Peoples R China
[3] Qi Biodesign, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Microbiol, State Key Lab Plant Genom, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Biot Interact, Beijing, Peoples R China
关键词
D O I
10.1038/s41587-024-02160-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome editing with prime editors based on CRISPR-Cas9 is limited by the large size of the system and the requirement for a G/C-rich protospacer-adjacent motif (PAM) sequence. Here, we use the smaller Cas12a protein to develop four circular RNA-mediated prime editor (CPE) systems: nickase-dependent CPE (niCPE), nuclease-dependent CPE (nuCPE), split nickase-dependent CPE (sniCPE) and split nuclease-dependent CPE (snuCPE). CPE systems preferentially recognize T-rich genomic regions and possess a potential multiplexing capacity in comparison to corresponding Cas9-based systems. The efficiencies of the nuclease-based systems are up to 10.42%, whereas niCPE and sniCPE reach editing frequencies of up to 24.89% and 40.75% without positive selection in human cells, respectively. A derivative system, called one-sniCPE, combines all three RNA editing components under a single promoter. By arraying CRISPR RNAs for different targets in one circular RNA, we also demonstrate low-efficiency editing of up to four genes simultaneously with the nickase prime editors niCPE and sniCPE.
引用
收藏
页码:1921 / 1922
页数:2
相关论文
共 50 条
  • [11] Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics
    Qian, Weidong
    Huang, Jie
    Wang, Ting
    He, Xiaoxian
    Xu, Guozhang
    Li, Yongdong
    VIRUS RESEARCH, 2021, 305
  • [12] The CRISPR-Cas12a Platform for Accurate Genome Editing, Gene Disruption, and Efficient Transgene Integration in Human Immune Cells
    Mohr, Marina
    Damas, Nkerorema
    Gudmand-Hoyer, Johanne
    Zeeberg, Katrine
    Jedrzejczyk, Dominika
    Vlassis, Arsenios
    Morera-Gomez, Marti
    Pereira-Schoning, Sara
    Pus, Urska
    Oliver-Almirall, Anna
    Jensen, Tanja Lyholm
    Baumgartner, Roland
    Weinert, Brian Tate
    Gill, Ryan T.
    Warnecke, Tanya
    ACS SYNTHETIC BIOLOGY, 2023, 12 (02): : 375 - 389
  • [13] Correction: Profiling the impact of the promoters on CRISPR-Cas12a system in human cells
    Jinhe Li
    Qingchun Liang
    HuaPing Zhou
    Ming Zhou
    Hongxin Huang
    Cellular & Molecular Biology Letters, 28 (1)
  • [14] Engineered circular guide RNAs boost CRISPR/Cas12a-and CRISPR/Cas13d-based DNA and RNA editing
    Zhang, Xin
    Wang, Xinlong
    Lv, Jie
    Huang, Hongxin
    Wang, Jiahong
    Zhuo, Ma
    Tan, Zhihong
    Huang, Guanjie
    Liu, Jiawei
    Liu, Yuchen
    Li, Mengrao
    Lin, Qixiao
    Li, Lian
    Ma, Shufeng
    Huang, Tao
    Lin, Ying
    Zhao, Xiaoyang
    Rong, Zhili
    GENOME BIOLOGY, 2023, 24 (01)
  • [15] Engineered circular guide RNAs boost CRISPR/Cas12a- and CRISPR/Cas13d-based DNA and RNA editing
    Xin Zhang
    Xinlong Wang
    Jie Lv
    Hongxin Huang
    Jiahong Wang
    Ma Zhuo
    Zhihong Tan
    Guanjie Huang
    Jiawei Liu
    Yuchen Liu
    Mengrao Li
    Qixiao Lin
    Lian Li
    Shufeng Ma
    Tao Huang
    Ying Lin
    Xiaoyang Zhao
    Zhili Rong
    Genome Biology, 24
  • [16] Predicting the efficiency of prime editing guide RNAs in human cells (vol 39, pg 198, 2021)
    Kim, Hui Kwon
    Yu, Goosang
    Park, Jinman
    Min, Seonwoo
    Lee, Sungtae
    Yoon, Sungroh
    Kim, Hyongbum Henry
    NATURE BIOTECHNOLOGY, 2024, 42 (03) : 529 - 529
  • [17] Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing (vol 37, pg 276, 2019)
    Kleinstiver, Benjamin P.
    Sousa, Alexander A.
    Walton, Russell T.
    Tak, Y. Esther
    Hsu, Jonathan Y.
    Clement, Kendell
    Welch, Moira M.
    Horng, Joy E.
    Malagon-Lopez, Jose
    Scarfo, Irene
    Maus, Marcela V.
    Pinello, Luca
    Aryee, Martin J.
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2020, 38 (07) : 901 - 901
  • [18] Chemically modified guide RNAs enhance CRISPR/Cas genome editing in human primary cells
    Bak, R. O.
    Hendel, A.
    Clark, J. T.
    Kennedy, A. B.
    Ryan, D. E.
    Roy, S.
    Steinfeld, I.
    Lunstad, B. D.
    Kaiser, R. J.
    Wilkens, A. B.
    Bacchetta, R.
    Tsalenko, A.
    Dellinger, D.
    Bruhn, L.
    Porteus, M. H.
    HUMAN GENE THERAPY, 2015, 26 (10) : A11 - A12
  • [19] HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing (vol 29, pg 36, 2022)
    Liu, Nan
    Zhou, Lifang
    Lin, Guifeng
    Hu, Yun
    Jiao, Yaoge
    Wang, Yanhong
    Liu, Jingming
    Yang, Shengyong
    Yao, Shaohua
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2022, 30 : 173 - 173
  • [20] CRISPR-Cas12a Genome Editing at the Whole-Plant Level Using Two Compatible RNA Virus Vectors
    Uranga, Mireia
    Vazquez-Vilar, Marta
    Orzaez, Diego
    Daros, Jose-Antonio
    CRISPR JOURNAL, 2021, 4 (05): : 761 - 769