Scalable measurement error mitigation via iterative bayesian unfolding

被引:2
|
作者
Pokharel, Bibek [1 ,2 ,3 ]
Srinivasan, Siddarth [4 ]
Quiroz, Gregory [5 ,6 ]
Boots, Byron [4 ]
机构
[1] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] IBM Res Almaden, IBM Quantum, San Jose, CA 95120 USA
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[5] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[6] Johns Hopkins Univ, William H Miller III Dept Phys & Astron, Baltimore, MD 21218 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
关键词
D O I
10.1103/PhysRevResearch.6.013187
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement errors are a significant obstacle to achieving scalable quantum computation. To counteract systematic readout errors, researchers have developed postprocessing techniques known as measurement error mitigation methods. However, these methods face a tradeoff between scalability and returning nonnegative probabilities. In this paper, we present a solution to overcome this challenge. Our approach focuses on iterative Bayesian unfolding, a standard mitigation technique used in high-energy physics experiments, and implements it in a scalable way. We demonstrate our method on experimental Greenberger-Horne-Zeilinger state preparation on up to 127 qubits and on the Bernstein-Vazirani algorithm on up to 26 qubits. Compared to state-of-the-art methods (such as M3), our implementation guarantees valid probability distributions, returns comparable or better -mitigated results, and does so without a noticeable time and memory overhead.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Quantum Error Mitigation via Matrix Product Operators
    Guo, Yuchen
    Yang, Shuo
    PRX QUANTUM, 2022, 3 (04):
  • [32] IMIA: Interference Mitigation via Iterative Approaches for Automotive Radar
    Yang, Shuai
    Shang, Xiaolei
    Zhang, Dongheng
    Sun, Qibin
    Chen, Yan
    IEEE Transactions on Radar Systems, 2023, 1 : 753 - 766
  • [33] A Bayesian Measurement Error Model for Misaligned Radiographic Data
    Lennox, Kristin P.
    Glascoe, Lee G.
    TECHNOMETRICS, 2013, 55 (04) : 450 - 460
  • [34] Bayesian regularization of Gaussian graphical models with measurement error
    Byrd, Michael
    Nghiem, Linh H.
    McGee, Monnie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 156
  • [35] Bayesian Growth Curve Modeling with Measurement Error in Time
    Zhang, Lijin
    Qu, Wen
    Zhang, Zhiyong
    MULTIVARIATE BEHAVIORAL RESEARCH, 2025,
  • [36] On Classical Measurement Error within a Bayesian Nonparametric Framework
    Bernieri, Emmanuel
    de Carvalho, Miguel
    RECENT DEVELOPMENTS IN STATISTICS AND DATA SCIENCE, SPE2021, 2022, 398 : 353 - 362
  • [37] Objective Bayesian analysis of spatial data with measurement error
    De Oliveira, Victor
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (02): : 283 - 301
  • [38] Bayesian Estimation of Measurement Error Models with Longitudinal Data
    Li, Dewang
    Qiu, Meilan
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ELECTRONIC INDUSTRY AND AUTOMATION (EIA 2017), 2017, 145 : 242 - 245
  • [39] Bayesian inference for dependent elliptical measurement error models
    Vidal, Ignacio
    Arellano-Valle, Reinaldo B.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) : 2587 - 2597
  • [40] Bayesian inference in measurement error models for replicated data
    de Castro, Mario
    Bolfarine, Heleno
    Galea, M.
    ENVIRONMETRICS, 2013, 24 (01) : 22 - 30