Scalable measurement error mitigation via iterative bayesian unfolding

被引:2
|
作者
Pokharel, Bibek [1 ,2 ,3 ]
Srinivasan, Siddarth [4 ]
Quiroz, Gregory [5 ,6 ]
Boots, Byron [4 ]
机构
[1] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] IBM Res Almaden, IBM Quantum, San Jose, CA 95120 USA
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[5] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[6] Johns Hopkins Univ, William H Miller III Dept Phys & Astron, Baltimore, MD 21218 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
关键词
D O I
10.1103/PhysRevResearch.6.013187
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement errors are a significant obstacle to achieving scalable quantum computation. To counteract systematic readout errors, researchers have developed postprocessing techniques known as measurement error mitigation methods. However, these methods face a tradeoff between scalability and returning nonnegative probabilities. In this paper, we present a solution to overcome this challenge. Our approach focuses on iterative Bayesian unfolding, a standard mitigation technique used in high-energy physics experiments, and implements it in a scalable way. We demonstrate our method on experimental Greenberger-Horne-Zeilinger state preparation on up to 127 qubits and on the Bernstein-Vazirani algorithm on up to 26 qubits. Compared to state-of-the-art methods (such as M3), our implementation guarantees valid probability distributions, returns comparable or better -mitigated results, and does so without a noticeable time and memory overhead.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Automated Scalable Bayesian Inference via Hilbert Coresets
    Campbell, Trevor
    Broderick, Tamara
    Journal of Machine Learning Research, 2019, 20
  • [22] Automated Scalable Bayesian Inference via Hilbert Coresets
    Campbell, Trevor
    Broderick, Tamara
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [23] Measurement error correction using iterative method and oversampling
    Kamensky, M.
    Kovac, K.
    MEASUREMENT 2007: 6TH INTERNATIONAL CONFERENCE ON MEASUREMENT, PROCEEDINGS, 2007, : 38 - +
  • [24] IMPROVED MEASUREMENT ACCURACY FROM ITERATIVE ERROR CORRECTION
    ALIEV, TM
    DAMIROV, DI
    SHEKIKHANOV, AM
    MEASUREMENT TECHNIQUES, 1981, 24 (04) : 262 - 264
  • [25] Fast Iterative Combinatorial Auctions via Bayesian Learning
    Brero, Gianluca
    Lahaie, Sebastien
    Seuken, Sven
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1820 - 1828
  • [26] A Bayesian Filtering Approach for Error Mitigation in Ultra-Wideband Ranging
    Xin, Jing
    Gao, Kaiyuan
    Shan, Mao
    Yan, Bo
    Liu, Ding
    SENSORS, 2019, 19 (03)
  • [27] Efficient and Scalable Exploration via Estimation-Error
    Sun, Chuxiong
    Wang, Rui
    Li, Ruiying
    Wu, Jiao
    Hu, Xiaohui
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [28] Scalable error mitigation for noisy quantum circuits produces competitive expectation values
    Kim, Youngseok
    Wood, Christopher J.
    Yoder, Theodore J.
    Merkel, Seth T.
    Gambetta, Jay M.
    Temme, Kristan
    Kandala, Abhinav
    NATURE PHYSICS, 2023, 19 (05) : 752 - 759
  • [29] Scalable error mitigation for noisy quantum circuits produces competitive expectation values
    Youngseok Kim
    Christopher J. Wood
    Theodore J. Yoder
    Seth T. Merkel
    Jay M. Gambetta
    Kristan Temme
    Abhinav Kandala
    Nature Physics, 2023, 19 : 752 - 759
  • [30] Quantum readout error mitigation via deep learning
    Kim, Jihye
    Oh, Byungdu
    Chong, Yonuk
    Hwang, Euyheon
    Park, Daniel K.
    NEW JOURNAL OF PHYSICS, 2022, 24 (07):