Scalable measurement error mitigation via iterative bayesian unfolding

被引:2
|
作者
Pokharel, Bibek [1 ,2 ,3 ]
Srinivasan, Siddarth [4 ]
Quiroz, Gregory [5 ,6 ]
Boots, Byron [4 ]
机构
[1] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] IBM Res Almaden, IBM Quantum, San Jose, CA 95120 USA
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[5] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[6] Johns Hopkins Univ, William H Miller III Dept Phys & Astron, Baltimore, MD 21218 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
关键词
D O I
10.1103/PhysRevResearch.6.013187
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement errors are a significant obstacle to achieving scalable quantum computation. To counteract systematic readout errors, researchers have developed postprocessing techniques known as measurement error mitigation methods. However, these methods face a tradeoff between scalability and returning nonnegative probabilities. In this paper, we present a solution to overcome this challenge. Our approach focuses on iterative Bayesian unfolding, a standard mitigation technique used in high-energy physics experiments, and implements it in a scalable way. We demonstrate our method on experimental Greenberger-Horne-Zeilinger state preparation on up to 127 qubits and on the Bernstein-Vazirani algorithm on up to 26 qubits. Compared to state-of-the-art methods (such as M3), our implementation guarantees valid probability distributions, returns comparable or better -mitigated results, and does so without a noticeable time and memory overhead.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Scalable quantum measurement error mitigation via conditional independence and transfer learning
    Lee, Changwon
    Park, Daniel K.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [2] Scalable centralized Bayesian spam mitigation with bogofilter
    Blosser, J
    Josephsen, D
    USENIX Association Proceedings of the Eighteenth Large Installation System Administration Conference, 2004, : 1 - 20
  • [3] Convergence and Error Propagation Results on a Linear Iterative Unfolding Method
    Laszlo, Andras
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1345 - 1371
  • [4] Iterative updating of model error for Bayesian inversion
    Calvetti, Daniela
    Dunlop, Matthew
    Somersalo, Erkki
    Stuart, Andrew
    INVERSE PROBLEMS, 2018, 34 (02)
  • [5] A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology
    Lee, Changwoo J.
    Symanski, Elaine
    Rammah, Amal
    Kang, Dong Hun
    Hopke, Philip K.
    Park, Eun Sug
    BIOSTATISTICS, 2024, 26 (01)
  • [6] Scalable Mitigation of Measurement Errors on Quantum Computers
    Nation, Paul D.
    Kang, Hwajung
    Sundaresan, Neereja
    Gambetta, Jay M.
    PRX QUANTUM, 2021, 2 (04):
  • [7] Semiparametric Bayesian measurement error modeling
    Casanova, Maria P.
    Iglesias, Pilar
    Bolfarine, Heleno
    Salinas, Victor H.
    Pena, Alexis
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (03) : 512 - 524
  • [8] Bayesian smoothing for measurement error problems
    Berry, SM
    Carroll, RJ
    Ruppert, D
    TOTAL LEAST SQUARES AND ERRORS-IN-VARIABLES MODELING: ANALYSIS, ALGORITHMS AND APPLICATIONS, 2002, : 121 - 130
  • [9] Genetic Algorithms for Error Mitigation in Quantum Measurement
    Acampora, Giovanni
    Grossi, Michele
    Vitiello, Autilia
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1826 - 1832
  • [10] Component-wise iterative ensemble Kalman inversion for static Bayesian models with unknown measurement error covariance
    Botha, Imke
    Adams, Matthew P.
    Frazier, David
    Tran, Dang Khuong
    Bennett, Frederick R.
    Drovandi, Christopher
    INVERSE PROBLEMS, 2023, 39 (12)