A Deep Learning Model for Automated Segmentation of Geographic Atrophy Imaged Using Swept-Source OCT

被引:11
|
作者
Pramil, Varsha [1 ,2 ]
de Sisternes, Luis [3 ]
Omlor, Lars [3 ]
Lewis, Warren [3 ,4 ]
Sheikh, Harris [2 ]
Chu, Zhongdi [5 ]
Manivannan, Niranchana [3 ]
Durbin, Mary [6 ]
Wang, Ruikang K. [5 ]
Rosenfeld, Philip J. [7 ]
Shen, Mengxi [7 ]
Guymer, Robyn [8 ]
Liang, Michelle C. [1 ,2 ]
Gregori, Giovanni [7 ]
Waheed, Nadia K. [1 ,2 ,9 ]
机构
[1] Tufts Univ, Sch Med, Boston, MA USA
[2] Tufts Univ New England Med Ctr, New England Eye Ctr, Boston, MA USA
[3] Carl Zeiss Meditec Inc, California, Dublin, Ireland
[4] Bayside Photon Inc, Yellow Springs, OH USA
[5] Univ Washington Seattle, Dept Biomed Engn, Seattle, WA USA
[6] Heru Inc, Miami, FL USA
[7] Univ Miami Miller, Bascom Palmer Eye Inst, Sch Med, Miami, FL USA
[8] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Ctr Eye Res Australia, Dept Surg Ophthalmol, Melbourne, Australia
[9] New England Eye Ctr, 260 Tremont St,9th Floor, Boston, MA 02116 USA
来源
OPHTHALMOLOGY RETINA | 2023年 / 7卷 / 02期
基金
美国国家卫生研究院;
关键词
Automated algorithm; Deep learning; Geographic atrophy; SS-OCT; Swept-source OCT; OPTICAL COHERENCE TOMOGRAPHY; MACULAR DEGENERATION; END-POINTS; PROGRESSION; SECONDARY; VALIDATION;
D O I
10.1016/j.oret.2022.08.007
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To present a deep learning algorithm for segmentation of geographic atrophy (GA) using en face swept-source OCT (SS-OCT) images that is accurate and reproducible for the assessment of GA growth over time.Design: Retrospective review of images obtained as part of a prospective natural history study.Subjects: Patients with GA (n = 90), patients with early or intermediate age-related macular degeneration (n = 32), and healthy controls (n = 16).Methods: An automated algorithm using scan volume data to generate 3 image inputs characterizing the main OCT features of GAdhypertransmission in subretinal pigment epithelium (sub-RPE) slab, regions of RPE loss, and loss of retinal thicknessdwas trained using 126 images (93 with GA and 33 without GA, from the same number of eyes) using a fivefold cross-validation method and data augmentation techniques. It was tested in an independent set of one hundred eighty 6 x 6-mm2 macular SS-OCT scans consisting of 3 repeated scans of 30 eyes with GA at baseline and follow-up as well as 45 images obtained from 42 eyes without GA.Main Outcome Measures: The GA area, enlargement rate of GA area, square root of GA area, and square root of the enlargement rate of GA area measurements were calculated using the automated algorithm and compared with ground truth calculations performed by 2 manual graders. The repeatability of these measure-ments was determined using intraclass coefficients (ICCs).Results: There were no significant differences in the GA areas, enlargement rates of GA area, square roots of GA area, and square roots of the enlargement rates of GA area between the graders and the automated algorithm. The algorithm showed high repeatability, with ICCs of 0.99 and 0.94 for the GA area measurements and the enlargement rates of GA area, respectively. The repeatability limit for the GA area measurements made by grader 1, grader 2, and the automated algorithm was 0.28, 0.33, and 0.92 mm2, respectively.Conclusions: When compared with manual methods, this proposed deep learning-based automated algo-rithm for GA segmentation using en face SS-OCT images was able to accurately delineate GA and produce reproducible measurements of the enlargement rates of GA. Ophthalmology Retina 2023;7:127-141 (c) 2022 by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:127 / 141
页数:15
相关论文
共 50 条
  • [41] An Imaging and Quantification Protocol for the Characterization of the Deep Tissue Layers in Glaucoma by Swept-Source OCT
    Fazio, Massimo Antonio
    Girkin, Christopher A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [42] Attenuation correction assisted automatic segmentation for assessing choroidal thickness and vasculature with swept-source OCT
    Zhou, Hao
    Chu, Zhongdi
    Zhang, Qinqin
    Dai, Yining
    Gregori, Giovanni
    Rosenfeld, Philip J.
    Wang, Ruikang K.
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12): : 6067 - 6080
  • [43] Morphologic Stages of Rhegmatogenous Retinal Detachment Assessed Using Swept-Source OCT
    Melo, Isabela Martins
    Bansal, Aditya
    Naidu, Sumana
    Oquendo, Paola L.
    Hamli, Hesham
    Lee, Wei Wei
    Muni, Rajeev H.
    OPHTHALMOLOGY RETINA, 2023, 7 (05): : 398 - 405
  • [44] Morphologic Stages of Rhegmatogenous Retinal Detachment Assessed Using Swept-Source OCT
    Melo, Isabela Martins
    Bansal, Aditya
    Naidu, Sumana
    Oquendo, Paola L.
    Hamli, Hesham
    Lee, Wei Wei
    Muni, Rajeev H.
    OPHTHALMOLOGY, 2023, 130 (06) : 559 - 559
  • [45] Enhanced Visualization of the Choroido-Scleral Interface Using Swept-Source OCT
    Adhi, Mehreen
    Liu, Jonathan J.
    Qavi, Ahmed H.
    Grulkowski, Ireneusz
    Fujimoto, James G.
    Duker, Jay S.
    OPHTHALMIC SURGERY LASERS & IMAGING RETINA, 2013, 44 (06): : S40 - S42
  • [46] Comparison of Spectral-Domain OCT versus Swept-Source OCT for the Detection of Deep Optic Disc Drusen
    Rothenbuehler, Simon P.
    Malmqvist, Lasse
    Belmouhand, Mohamed
    Bjerager, Jakob
    Maloca, Peter M.
    Larsen, Michael
    Hamann, Steffen
    DIAGNOSTICS, 2022, 12 (10)
  • [47] Objective quantification of posterior capsule opacification using swept-source AS-OCT
    Tao, Shuya
    Liang, Feiyan
    Fan, Shuxin
    Wang, Mingwei
    Zhang, Yimeng
    Liu, Xialin
    He, Chang
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2025, 51 (01): : 3 - 8
  • [48] SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS CHORIOCAPILLARIS ALTERATIONS IN EYES WITH NASCENT GEOGRAPHIC ATROPHY AND DRUSEN-ASSOCIATED GEOGRAPHIC ATROPHY
    Moult, Eric M.
    Waheed, Nadia K.
    Novais, Eduardo A.
    Choi, Woojhon
    Lee, Byungkun
    Ploner, Stefan B.
    Cole, Emily D.
    Louzada, Ricardo N.
    Lu, Chen D.
    Rosenfeld, Philip J.
    Duker, Jay S.
    Fujimoto, James G.
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2016, 36 (12): : S2 - S11
  • [49] Comparison of swept-source AS-OCT versus spectral domain AS-OCT in the automated quantification of anterior chamber cells
    Privratsky, Joseph
    Pillar, Shani
    Kadomoto, Shin
    Zargari, Nicolette
    Cherian, Nina
    Gonzalez, Saitiel Sandoval
    Chen, Keren
    Jackson, Nicholas
    Corradetti, Giulia
    Sadda, SriniVas R.
    Holland, Gary
    Tsui, Edmund
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [50] Choroidal Changes in Eyes with Exudative AMD Before and After Anti-VEGF Therapy Imaged with Swept-Source OCT
    Shen, Mengxi
    Zhou, Hao
    Zhang, Qinqin
    Jiang, Xiaoshuang
    Trivizki, Omer
    Laiginhas, Rita
    Liu, Jeremy
    Li, Jianqing
    De Sisternes, Luis
    Feuer, William J.
    Wang, Ruikang K.
    Gregori, Giovanni
    Rosenfeld, Philip J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)