One Step Large-Scale Multi-view Subspace Clustering Based on Orthogonal Matrix Factorization with Consensus Graph Learning

被引:0
|
作者
Zhang, Xinrui [1 ]
Li, Kai [1 ,2 ]
Peng, Jinjia [1 ,2 ]
机构
[1] Hebei Univ, Sch Cyber Secur & Comp, Baoding 071000, Peoples R China
[2] Hebei Machine Vis Engn Res Ctr, Baoding, Peoples R China
关键词
Multi-view clustering; Self-expressive subspace clustering; Large-scale datasets; Orthogonal matrix factorization;
D O I
10.1007/978-981-99-8462-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering has always been a widely concerned issue due to its wide range of applications. Since real-world datasets are usually very large, the clustering problem for large-scale multi-view datasets has always been a research hotspot. Most of the existing methods to solve the problem of large-scale multi-view data usually include several independent steps, namely anchor point generation, graph construction, and clustering result generation, which generate the inflexibility anchor points, and the process of obtaining the cluster indicating matrix and graph constructing are separating from each other, which leads to suboptimal results. Therefore, to address these issues, a one-step multi-view subspace clustering model based on orthogonal matrix factorization with consensus graph learning(CGLMVC) is proposed. Specifically, our method puts anchor point learning, graph construction, and clustering result generation into a unified learning framework, these three processes are learned adaptively to boost each other which can obtain flexible anchor representation and improve the clustering quality. In addition, there is no need for post-processing steps. This method also proposes an alternate optimization algorithm for convergence results, which is proved to have linear time complexity. Experiments on several real world large-scale multi-view datasets demonstrate its efficiency and scalability.
引用
收藏
页码:113 / 125
页数:13
相关论文
共 50 条
  • [41] Joint learning of latent subspace and structured graph for multi-view clustering
    Wang, Yinuo
    Guo, Yu
    Wang, Zheng
    Wang, Fei
    PATTERN RECOGNITION, 2024, 154
  • [42] One-step graph-based incomplete multi-view clustering
    Zhou, Baishun
    Ji, Jintian
    Gu, Zhibin
    Zhou, Zihao
    Ding, Gangyi
    Feng, Songhe
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [43] Fine-Grained Graph Learning for Multi-View Subspace Clustering
    Wang, Yidi
    Pei, Xiaobing
    Zhan, Haoxi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2804 - 2815
  • [44] One-step graph-based incomplete multi-view clustering
    Baishun Zhou
    Jintian Ji
    Zhibin Gu
    Zihao Zhou
    Gangyi Ding
    Songhe Feng
    Multimedia Systems, 2024, 30
  • [45] Hybrid Matrix Factorization for Multi-view Clustering
    Yu, Hongbin
    Shu, Xin
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING, PT II, 2019, 11936 : 302 - 311
  • [46] Incomplete multi-view clustering with incomplete graph-regularized orthogonal non-negative matrix factorization
    Naiyao Liang
    Zuyuan Yang
    Zhenni Li
    Wei Han
    Applied Intelligence, 2022, 52 : 14607 - 14623
  • [47] Incomplete multi-view clustering with incomplete graph-regularized orthogonal non-negative matrix factorization
    Liang, Naiyao
    Yang, Zuyuan
    Li, Zhenni
    Han, Wei
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14607 - 14623
  • [48] Efficient One-Pass Multi-View Subspace Clustering with Consensus Anchors
    Liu, Suyuan
    Wang, Siwei
    Zhang, Pei
    Xu, Kai
    Liu, Xinwang
    Zhang, Changwang
    Gao, Feng
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7576 - 7584
  • [49] Multi-View Clustering via Graph Regularized Symmetric Nonnegative Matrix Factorization
    Zhang, Xianchao
    Wang, Zhongxiu
    Zong, Linlin
    Yu, Hong
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2016), 2016, : 109 - 114
  • [50] Triplets-based large-scale multi-view spectral clustering
    Yang, Tianchuan
    Wang, Chang-Dong
    Guo, Jipeng
    Li, Xiangcheng
    Chen, Man-Sheng
    Dang, Shuping
    Chen, Haiqiang
    INFORMATION FUSION, 2025, 121