Multi-View Clustering via Graph Regularized Symmetric Nonnegative Matrix Factorization

被引:0
|
作者
Zhang, Xianchao [1 ]
Wang, Zhongxiu [1 ]
Zong, Linlin [1 ]
Yu, Hong [1 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
关键词
clusteringt; NMF; multi-view;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-view clustering has become a hot topic since the past decade and nonnegative matrix factorization (NMF) based multi-view clustering algorithms have shown their superiorities. Nevertheless, two drawbacks prevent NMF based multi-view algorithms from being a better algorithm: (1) The solution of NMF based multi-view algorithms is not unique. (2) Standard orthogonal basis matrix is not obtained for each view. Orthogonality is utilized to settle these above problems in our framework and high computational complexity caused by orthogonality is avoided. Moreover, to preserve the locally geometrical structure between views, graph regularization is utilized. Finally, we offer an update rule for the parameter of the graph regularization to balance the reconstruct error and regularization and make the objective function converge faster. Experimental results and theoretical proof show the validity and efficiency of our algorithm.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 50 条
  • [1] Incomplete Multi-view Clustering via Graph Regularized Matrix Factorization
    Wen, Jie
    Zhang, Zheng
    Xu, Yong
    Zhong, Zuofeng
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 593 - 608
  • [2] Multi-View Clustering via Multi-Manifold Regularized Nonnegative Matrix Factorization
    Zhang, Xianchao
    Zhao, Long
    Zong, Linlin
    Liu, Xinyue
    Yu, Hong
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 1103 - 1108
  • [3] Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition
    Zhang, Xinyu
    Gao, Hongbo
    Li, Guopeng
    Zhao, Jianhui
    Huo, Jianghao
    Yin, Jialun
    Liu, Yuchao
    Zheng, Li
    [J]. INFORMATION SCIENCES, 2018, 432 : 463 - 478
  • [4] Multi-view Clustering via Co-regularized Nonnegative Matrix Factorization with Correlation Constraint
    Tan, Yi
    Long, Fei
    Wang, Pengpeng
    Xue, Yunhao
    Ou, Weihua
    [J]. 2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD), 2016, : 1 - 6
  • [5] Deep manifold regularized semi-nonnegative matrix factorization for Multi-view Clustering
    Liu, Xiangnan
    Ding, Shifei
    Xu, Xiao
    Wang, Lijuan
    [J]. APPLIED SOFT COMPUTING, 2023, 132
  • [6] Multi-View Network Embedding Via Graph Factorization Clustering and Co-Regularized Multi-View Agreement
    Sun, Yiwei
    Bui, Ngot
    Hsieh, Tsung-Yu
    Honavar, Vasant
    [J]. 2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1006 - 1013
  • [7] Robust Dual-Graph Regularized Deep Matrix Factorization for Multi-view Clustering
    Shu, Zhenqiu
    Li, Bin
    Hu, Cong
    Yu, Zhengtao
    Wu, Xiao-Jun
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (05) : 6067 - 6087
  • [8] Deep graph regularized non-negative matrix factorization for multi-view clustering
    Li, Jianqiang
    Zhou, Guoxu
    Qiu, Yuning
    Wang, Yanjiao
    Zhang, Yu
    Xie, Shengli
    [J]. NEUROCOMPUTING, 2020, 390 : 108 - 116
  • [9] Robust Dual-Graph Regularized Deep Matrix Factorization for Multi-view Clustering
    Zhenqiu Shu
    Bin Li
    Cong Hu
    Zhengtao Yu
    Xiao-Jun Wu
    [J]. Neural Processing Letters, 2023, 55 : 6067 - 6087
  • [10] Graph Regularized and Feature Aware Matrix Factorization for Robust Incomplete Multi-View Clustering
    Wen, Jie
    Xu, Gehui
    Tang, Zhanyan
    Wang, Wei
    Fei, Lunke
    Xu, Yong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3728 - 3741