QuTree: A tree tensor network package

被引:2
|
作者
Ellerbrock, Roman [1 ,2 ,3 ,4 ]
Johnson, K. Grace [1 ,2 ,3 ]
Seritan, Stefan [1 ,2 ,3 ]
Hoppe, Hannes [4 ]
Zhang, J. H. [1 ,2 ,3 ]
Lenzen, Tim [4 ]
Weike, Thomas [4 ]
Manthe, Uwe [4 ]
Martinez, Todd J. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, PULSE Inst, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[4] Bielefeld Univ, Univ str 25, D-33615 Bielefeld, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 11期
关键词
POTENTIAL-ENERGY SURFACES; QUANTUM SUPREMACY; DYNAMICS; STATE; REPRESENTATION; FORMULATION; EXCITATION; ACCURATE;
D O I
10.1063/5.0180233
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present QuTree, a C++ library for tree tensor network approaches. QuTree provides class structures for tensors, tensor trees, and related linear algebra functions that facilitate the fast development of tree tensor network approaches such as the multilayer multiconfigurational time-dependent Hartree approach or the density matrix renormalization group approach and its various extensions. We investigate the efficiency of relevant tensor and tensor network operations and show that the overhead for managing the network structure is negligible, even in cases with a million leaves and small tensors. QuTree focuses on providing simple, high-level routines while retaining easy access to the backend to facilitate novel developments. We demonstrate the capabilities of the package by computing the eigenstates of coupled harmonic oscillator Hamiltonians and performing random circuit simulations on a virtual quantum computer.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Tree-tensor-network classifiers for machine learning: From quantum inspired to quantum assisted
    Wall, Michael L.
    D'Aguanno, Giuseppe
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [32] Tree tensor networks and entanglement spectra
    Pizorn, Iztok
    Verstraete, Frank
    Konik, Robert M.
    PHYSICAL REVIEW B, 2013, 88 (19):
  • [33] TIME INTEGRATION OF TREE TENSOR NETWORKS
    Ceruti, Gianluca
    Lubich, Christian
    Walach, Hanna
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (01) : 289 - 313
  • [34] TRES: An R Package for Tensor Regression and Envelope Algorithms
    Zeng, Jing
    Wang, Wenjing
    Zhang, Xin
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (12): : 1 - 31
  • [35] FaRe: A Mathematica package for tensor reduction of Feynman integrals
    Fiorentin, Michele Re
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (03):
  • [36] Entanglement bipartitioning and tree tensor networks
    Okunishi, Kouichi
    Ueda, Hiroshi
    Nishino, Tomotoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2023, 2023 (02):
  • [37] Tree tensor networks for generative modeling
    Cheng, Song
    Wang, Lei
    Xiang, Tao
    Zhang, Pan
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [38] Tree-based tensor formats
    Falcó A.
    Hackbusch W.
    Nouy A.
    SeMA Journal, 2021, 78 (2) : 159 - 173
  • [39] Capabilities of the Mathematica package 'Riemannian geometry and tensor calculus'
    Bonanos, S
    RECENT DEVELOPMENTS IN GRAVITY, 2003, : 174 - 182
  • [40] Geometry of tree-based tensor formats in tensor Banach spaces
    Antonio Falcó
    Wolfgang Hackbusch
    Anthony Nouy
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2127 - 2144