QuTree: A tree tensor network package

被引:2
|
作者
Ellerbrock, Roman [1 ,2 ,3 ,4 ]
Johnson, K. Grace [1 ,2 ,3 ]
Seritan, Stefan [1 ,2 ,3 ]
Hoppe, Hannes [4 ]
Zhang, J. H. [1 ,2 ,3 ]
Lenzen, Tim [4 ]
Weike, Thomas [4 ]
Manthe, Uwe [4 ]
Martinez, Todd J. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, PULSE Inst, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[4] Bielefeld Univ, Univ str 25, D-33615 Bielefeld, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 11期
关键词
POTENTIAL-ENERGY SURFACES; QUANTUM SUPREMACY; DYNAMICS; STATE; REPRESENTATION; FORMULATION; EXCITATION; ACCURATE;
D O I
10.1063/5.0180233
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present QuTree, a C++ library for tree tensor network approaches. QuTree provides class structures for tensors, tensor trees, and related linear algebra functions that facilitate the fast development of tree tensor network approaches such as the multilayer multiconfigurational time-dependent Hartree approach or the density matrix renormalization group approach and its various extensions. We investigate the efficiency of relevant tensor and tensor network operations and show that the overhead for managing the network structure is negligible, even in cases with a million leaves and small tensors. QuTree focuses on providing simple, high-level routines while retaining easy access to the backend to facilitate novel developments. We demonstrate the capabilities of the package by computing the eigenstates of coupled harmonic oscillator Hamiltonians and performing random circuit simulations on a virtual quantum computer.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] T3NS: Three-Legged Tree Tensor Network States
    Gunst, Klaas
    Verstraete, Frank
    Wouters, Sebastian
    Legeza, Ors
    Van Neck, Dimitri
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (04) : 2026 - 2033
  • [22] Charge and statistics of lattice quasiholes from density measurements: A tree tensor network study
    Macaluso, E.
    Comparin, T.
    Umucalilar, R. O.
    Gerster, M.
    Montangero, S.
    Rizzi, M.
    Carusotto, I
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [23] TTN-FCN: A Tangut character classification framework by tree tensor network and fully connected neural network
    Ma, Ziping
    Ma, Jinlin
    IET IMAGE PROCESSING, 2023, 17 (13) : 3815 - 3829
  • [24] The Canon package: a fast kernel for tensor manipulators
    Manssur, LRU
    Portugal, R
    COMPUTER PHYSICS COMMUNICATIONS, 2004, 157 (02) : 173 - 180
  • [25] The Invar tensor package: Differential invariants of Riemann
    Martin-Garcia, J. M.
    Yllanes, D.
    Portugal, R.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (08) : 586 - 590
  • [26] ipcoal: an interactive Python']Python package for simulating and analyzing genealogies and sequences on a species tree or network
    McKenzie, Patrick F.
    Eaton, Deren A. R.
    BIOINFORMATICS, 2020, 36 (14) : 4193 - 4196
  • [27] An Integrated and "Engaging" Package for Tree Animations
    Roessling, Guido
    Schneider, Silke
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 178 : 69 - 78
  • [28] Griffiths singularities in the random quantum Ising antiferromagnet: A tree tensor network renormalization group study
    Lin, Yu-Ping
    Kao, Ying-Jer
    Chen, Pochung
    Lin, Yu-Cheng
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [29] Studying dynamics in two-dimensional Quantum lattices using tree tensor network states
    Kloss, Benedikt
    Reichman, David
    Bar Lev, Yevgeny
    SCIPOST PHYSICS, 2020, 9 (05):
  • [30] Simulating quantum systems on the Bethe lattice by translationally invariant infinite-tree tensor network
    Nagy, Adam
    ANNALS OF PHYSICS, 2012, 327 (02) : 542 - 552