QuTree: A tree tensor network package

被引:2
|
作者
Ellerbrock, Roman [1 ,2 ,3 ,4 ]
Johnson, K. Grace [1 ,2 ,3 ]
Seritan, Stefan [1 ,2 ,3 ]
Hoppe, Hannes [4 ]
Zhang, J. H. [1 ,2 ,3 ]
Lenzen, Tim [4 ]
Weike, Thomas [4 ]
Manthe, Uwe [4 ]
Martinez, Todd J. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, PULSE Inst, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[4] Bielefeld Univ, Univ str 25, D-33615 Bielefeld, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 11期
关键词
POTENTIAL-ENERGY SURFACES; QUANTUM SUPREMACY; DYNAMICS; STATE; REPRESENTATION; FORMULATION; EXCITATION; ACCURATE;
D O I
10.1063/5.0180233
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present QuTree, a C++ library for tree tensor network approaches. QuTree provides class structures for tensors, tensor trees, and related linear algebra functions that facilitate the fast development of tree tensor network approaches such as the multilayer multiconfigurational time-dependent Hartree approach or the density matrix renormalization group approach and its various extensions. We investigate the efficiency of relevant tensor and tensor network operations and show that the overhead for managing the network structure is negligible, even in cases with a million leaves and small tensors. QuTree focuses on providing simple, high-level routines while retaining easy access to the backend to facilitate novel developments. We demonstrate the capabilities of the package by computing the eigenstates of coupled harmonic oscillator Hamiltonians and performing random circuit simulations on a virtual quantum computer.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Optimal tree tensor network operators for tensor network simulations: Applications to open quantum systems
    Li, Weitang
    Ren, Jiajun
    Yang, Hengrui
    Wang, Haobin
    Shuai, Zhigang
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [2] Generative modeling via tree tensor network states
    Xun Tang
    YoonHaeng Hur
    Yuehaw Khoo
    Lexing Ying
    Research in the Mathematical Sciences, 2023, 10
  • [3] Nonlocal correlations in the tree-tensor-network configuration
    Yang, Lihua
    Qi, Xiaofei
    Hou, Jinchuan
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [4] State diagrams to determine tree tensor network operators
    Milbradt, Richard M.
    Huang, Qunsheng
    Mendl, Christian B.
    SCIPOST PHYSICS CORE, 2024, 7 (02):
  • [5] Generative modeling via tree tensor network states
    Tang, Xun
    Hur, YoonHaeng
    Khoo, Yuehaw
    Ying, Lexing
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2023, 10 (02)
  • [6] The invar tensor package
    Martin-Garcia, J. M.
    Portugal, R.
    Manssur, L. R. U.
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (08) : 640 - 648
  • [7] Tree tensor network approach to simulating Shor's algorithm
    Dumitrescu, Eugene
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [8] Computing vibrational eigenstates with tree tensor network states (TTNS)
    Larsson, Henrik R.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (20):
  • [9] From tree tensor network to multiscale entanglement renormalization ansatz
    Qian, Xiangjian
    Qin, Mingpu
    PHYSICAL REVIEW B, 2022, 105 (20)
  • [10] Machine learning by unitary tensor network of hierarchical tree structure
    Liu, Ding
    Ran, Shi-Ju
    Wittek, Peter
    Peng, Cheng
    Garcia, Raul Blazquez
    Su, Gang
    Lewenstein, Maciej
    NEW JOURNAL OF PHYSICS, 2019, 21 (07)