Protocol for inferring epithelial-to-mesenchymal transition trajectories from single-cell RNA sequencing data using R

被引:0
|
作者
Najafi, Annice [1 ]
Jolly, Mohit Kumar [2 ]
George, Jason T. [1 ,3 ,4 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
[2] Indian Inst Sci, Ctr Biosyst Sci & Engn, Bangalore 560012, India
[3] Texas A&M Univ, Intercollegiate Sch Engn Med, Houston, TX 77030 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77030 USA
来源
STAR PROTOCOLS | 2024年 / 5卷 / 01期
关键词
EMT;
D O I
10.1016/j.xpro.2023.102819
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The epithelial-to-mesenchymal transition (EMT) provides crucial insights into the metastatic process and possesses prognostic value within the cancer context. Here, we present COMET, an R package for inferring EMT trajectories and inter -state transition rates from single -cell RNA sequencing data. We describe steps for finding the optimal number of EMT genes for a specific context, estimating EMT -related trajectories, optimal fitting of continuous -time Markov chain to inferred trajectories, and estimating inter -state transition rates.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [42] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [43] Protocol to obtain high-quality single-cell RNA- sequencing data from mouse liver cells using centrifugation
    Wang, Simeng
    STAR PROTOCOLS, 2022, 3 (04):
  • [45] Exploring transcription modalities from bimodal, single-cell RNA sequencing data
    Regenyi, Eniko
    Mashreghi, Mir-Farzin
    Schuette, Christof
    Sunkara, Vikram
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (04)
  • [46] DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data
    DePasquale, Erica A. K.
    Schnell, Daniel J.
    Van Camp, Pieter-Jan
    Valiente-Alandi, Inigo
    Blaxall, Burns C.
    Grimes, H. Leighton
    Singh, Harinder
    Salomonis, Nathan
    CELL REPORTS, 2019, 29 (06): : 1718 - +
  • [47] CellBender removes technical artifacts from single-cell RNA sequencing data
    Fleming, Stephen
    Babadi, Mehrtash
    NATURE METHODS, 2023, 20 (09) : 1285 - 1286
  • [48] Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence
    Li, Xin
    Li, Bairu
    Gu, Shaobin
    Pang, Xinyue
    Mason, Patrick
    Yuan, Jiangfeng
    Jia, Jingyu
    Sun, Jiaju
    Zhao, Chunyan
    Henry, Robert
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [49] A comparison of integration methods for single-cell RNA sequencing data and ATAC sequencing data
    Kan, Yulong
    Wang, Weihao
    Qi, Yunjing
    Zhang, Zhongxiao
    Liang, Xikeng
    Jin, Shuilin
    QUANTITATIVE BIOLOGY, 2025, 13 (02)
  • [50] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196