Exploring transcription modalities from bimodal, single-cell RNA sequencing data

被引:0
|
作者
Regenyi, Eniko [1 ,2 ]
Mashreghi, Mir-Farzin [1 ]
Schuette, Christof [3 ]
Sunkara, Vikram [1 ,2 ]
机构
[1] German Rheumatism Res Ctr Berlin, Syst Rheumatol, Virchowweg 12, D-10117 Berlin, Germany
[2] Zuse Inst Berlin, Visual & Data Centr Comp, Takustr 7, D-14195 Berlin, Germany
[3] Zuse Inst Berlin, Modeling & Simulat Complex Proc, Takustr 7, D-14195 Berlin, Germany
关键词
GENE; EXPRESSION;
D O I
10.1093/nargab/lqae179
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
There is a growing interest in generating bimodal, single-cell RNA sequencing (RNA-seq) data for studying biological pathways. These data are predominantly utilized in understanding phenotypic trajectories using RNA velocities; however, the shape information encoded in the two-dimensional resolution of such data is not yet exploited. In this paper, we present an elliptical parametrization of two-dimensional RNA-seq data, from which we derived statistics that reveal four different modalities. These modalities can be interpreted as manifestations of the changes in the rates of splicing, transcription or degradation. We performed our analysis on a cell cycle and a colorectal cancer dataset. In both datasets, we found genes that are not picked up by differential gene expression analysis (DGEA), and are consequently unnoticed, yet visibly delineate phenotypes. This indicates that, in addition to DGEA, searching for genes that exhibit the discovered modalities could aid recovering genes that set phenotypes apart. For communities studying biomarkers and cellular phenotyping, the modalities present in bimodal RNA-seq data broaden the search space of genes, and furthermore, allow for incorporating cellular RNA processing into regulatory analyses.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
    Carilli, Maria
    Gorin, Gennady
    Choi, Yongin
    Chari, Tara
    Pachter, Lior
    NATURE METHODS, 2024, 21 (08) : 1466 - 1469
  • [2] Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
    Xi, Nan Miles
    Li, Jingyi Jessica
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 4079 - 4095
  • [3] SNV identification from single-cell RNA sequencing data
    Schnepp, Patricia M.
    Chen, Mengjie
    Keller, Evan T.
    Zhou, Xiang
    HUMAN MOLECULAR GENETICS, 2019, 28 (21) : 3569 - 3583
  • [4] Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
    Zhao, Xinlei
    Wu, Shuang
    Fang, Nan
    Sun, Xiao
    Fan, Jue
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1581 - 1595
  • [5] Single-cell RNA sequencing in exploring the pathogenesis of diabetic retinopathy
    Zhang, Xinzi
    Zhang, Fang
    Xu, Xun
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (07):
  • [6] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252
  • [7] Splatter: simulation of single-cell RNA sequencing data
    Zappia, Luke
    Phipson, Belinda
    Oshlack, Alicia
    GENOME BIOLOGY, 2017, 18
  • [8] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [9] Splatter: simulation of single-cell RNA sequencing data
    Luke Zappia
    Belinda Phipson
    Alicia Oshlack
    Genome Biology, 18
  • [10] Single-cell nascent RNA sequencing unveils coordinated global transcription
    Mahat, Dig B.
    Tippens, Nathaniel D.
    Martin-Rufino, Jorge D.
    Waterton, Sean K.
    Fu, Jiayu
    Blatt, Sarah E.
    Sharp, Phillip A.
    NATURE, 2024, 631 (8019) : 216 - +