EODIE-Earth Observation Data Information Extractor

被引:1
|
作者
Wittke, Samantha [1 ,2 ]
Fouilloux, Anne [3 ]
Lehti, Petteri [2 ,4 ]
Varho, Juuso [2 ,4 ]
Kivimaki, Arttu [2 ]
Karhu, Maiju [2 ]
Karjalainen, Mika [2 ]
Vaaja, Matti [1 ]
Puttonen, Eetu [2 ]
机构
[1] Aalto Univ, Dept Built Environm, Espoo, Finland
[2] Natl Land Survey Finland, Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Helsinki, Finland
[3] Univ Oslo, Dept Geosci, Oslo, Norway
[4] Aalto Univ, Dept Appl Phys, Espoo, Finland
基金
芬兰科学院;
关键词
Remote sensing; Big data processing; Earth observation; Open-source software; DIFFERENCE WATER INDEX; VEGETATION INDEX; WORLDVIEW-2; IMAGERY; PHENOLOGY; FOREST; NDWI; LEAF; DERIVATION; PROGRAM; RED;
D O I
10.1016/j.softx.2023.101421
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Remote sensing satellites provide a vast amount of data to monitor and observe Earth's surface and events on it. To use these data efficiently in subsequent analysis and decision-making, highly automated easy-to-use tools are needed. Here, we present Earth Observation Data Information Extractor (EODIE). EODIE is a toolkit to extract object-level time-series information from several multispectral satellite remote sensing platforms and to produce analysis-ready products for subsequent data analysis. EODIE has a modular design that makes it adjustable for end-user requirements. Users have a possibility to exchange and add modules in EODIE for flexible processing in different computing environments. With EODIE, remote sensing data can be processed to object level array, geotiff or statistics information of different (vegetation) indices or plain wavelength intervals. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Geo-reCAPTCHA: Crowdsourcing large amounts of geographic information from earth observation data
    Hillen, Florian
    Hoefle, Bernhard
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 40 : 29 - 38
  • [32] Lifting the Information Barriers to Address Sustainability Challenges with Data from Physical Geography and Earth Observation
    Lehmann, Anthony
    Chaplin-Kramer, Rebecca
    Lacayo, Martin
    Giuliani, Gregory
    Thau, David
    Koy, Kevin
    Goldberg, Grace
    Sharp, Richard, Jr.
    [J]. SUSTAINABILITY, 2017, 9 (05)
  • [33] Semantics-Enabled Framework for Spatial Image Information Mining of Linked Earth Observation Data
    Kurte, Kuldeep R.
    Durbha, Surya S.
    King, Roger L.
    Younan, Nicolas H.
    Vatsavai, Rangaraju
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (01) : 29 - 44
  • [34] IMPLEMENTING NEXT-GENERATION NATIONAL EARTH OBSERVATION DATA INFRASTRUCTURE TO INTEGRATE DISTRIBUTED BIG EARTH OBSERVATION DATA
    Xie, Jibo
    Li, Guoqing
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 194 - 197
  • [35] Pathway-level information extractor (PLIER) for gene expression data
    Weiguang Mao
    Elena Zaslavsky
    Boris M. Hartmann
    Stuart C. Sealfon
    Maria Chikina
    [J]. Nature Methods, 2019, 16 : 607 - 610
  • [36] Pathway-level information extractor (PLIER) for gene expression data
    Mao, Weiguang
    Zaslavsky, Elena
    Hartmann, Boris M.
    Sealfon, Stuart C.
    Chikina, Maria
    [J]. NATURE METHODS, 2019, 16 (07) : 607 - +
  • [37] A highly adaptable Web information extractor using graph data model
    Guo, Q
    Zhou, LZ
    Zhang, ZQ
    Feng, JH
    [J]. ADVANCED WEB TECHNOLOGIES AND APPLICATIONS, 2004, 3007 : 916 - 919
  • [38] Geo-information, earth observation, and their role for society
    Kainz, W
    [J]. RAST 2005: Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, 2005, : 83 - 86
  • [39] Earth observation data archiving in the USA and Europe
    Harris, R
    Olby, N
    [J]. SPACE POLICY, 2001, 17 (01) : 35 - 48
  • [40] A spatial presdeening technique for earth observation data
    Hua, Xin-Min
    Pan, Jianfu
    Ouzounov, Dimitar
    Lyapustin, Alexei
    Wang, Yujie
    Tewari, Krishna
    Leptoukh, Gregory
    Vollmer, Bruce
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (01) : 152 - 156