EODIE-Earth Observation Data Information Extractor

被引:1
|
作者
Wittke, Samantha [1 ,2 ]
Fouilloux, Anne [3 ]
Lehti, Petteri [2 ,4 ]
Varho, Juuso [2 ,4 ]
Kivimaki, Arttu [2 ]
Karhu, Maiju [2 ]
Karjalainen, Mika [2 ]
Vaaja, Matti [1 ]
Puttonen, Eetu [2 ]
机构
[1] Aalto Univ, Dept Built Environm, Espoo, Finland
[2] Natl Land Survey Finland, Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Helsinki, Finland
[3] Univ Oslo, Dept Geosci, Oslo, Norway
[4] Aalto Univ, Dept Appl Phys, Espoo, Finland
基金
芬兰科学院;
关键词
Remote sensing; Big data processing; Earth observation; Open-source software; DIFFERENCE WATER INDEX; VEGETATION INDEX; WORLDVIEW-2; IMAGERY; PHENOLOGY; FOREST; NDWI; LEAF; DERIVATION; PROGRAM; RED;
D O I
10.1016/j.softx.2023.101421
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Remote sensing satellites provide a vast amount of data to monitor and observe Earth's surface and events on it. To use these data efficiently in subsequent analysis and decision-making, highly automated easy-to-use tools are needed. Here, we present Earth Observation Data Information Extractor (EODIE). EODIE is a toolkit to extract object-level time-series information from several multispectral satellite remote sensing platforms and to produce analysis-ready products for subsequent data analysis. EODIE has a modular design that makes it adjustable for end-user requirements. Users have a possibility to exchange and add modules in EODIE for flexible processing in different computing environments. With EODIE, remote sensing data can be processed to object level array, geotiff or statistics information of different (vegetation) indices or plain wavelength intervals. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Earth observation, data policy and society
    Harris, R
    [J]. RAST 2005: Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, 2005, : 78 - 82
  • [22] Improved Intercalibration of Earth Observation Data
    Coburn, Craig A.
    Gerace, Aaron
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (01):
  • [23] Earth Observation Data Policy and Europe
    Harris, R
    [J]. SPACE POLICY, 2001, 17 (01) : 55 - 60
  • [24] Earth observation data policy and Europe
    Williamson, R
    [J]. SPACE POLICY, 2004, 20 (01) : 67 - 68
  • [25] Image information mining for earth observation at ESA
    D'Elia, S
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 168 - 171
  • [26] DEXTR (Data EXTRactor) with Internet applications: a powerful information tool
    Osborne, S
    [J]. LIBRARY COMPUTING, 2000, 19 (1-2): : 68 - 76
  • [27] Data Observation Network for Earth: Earth and environmental science data management and discovery
    Budden, Amber
    Michener, William
    Vieglais, Dave
    Koskela, Rebecca
    Soyka, Heather
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [28] Big Earth data: disruptive changes in Earth observation data management and analysis?
    Sudmanns, Martin
    Tiede, Dirk
    Lang, Stefan
    Bergstedt, Helena
    Trost, Georg
    Augustin, Hannah
    Baraldi, Andrea
    Blaschke, Thomas
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2020, 13 (07) : 832 - 850
  • [29] Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources
    Salcedo-Sanz, S.
    Ghamisi, P.
    Piles, M.
    Werner, M.
    Cuadra, L.
    Moreno-Martinez, A.
    Izquierdo-Verdiguier, E.
    Munoz-Mari, J.
    Mosavi, Amirhosein
    Camps-Valls, G.
    [J]. INFORMATION FUSION, 2020, 63 : 256 - 272
  • [30] ON THE OPTIMAL DESIGN OF CONVOLUTIONAL NEURAL NETWORKS FOR EARTH OBSERVATION DATA ANALYSIS BY MAXIMIZATION OF INFORMATION EXTRACTION
    Marinoni, Andrea
    Iannelli, Gianni C.
    Khaleghian, Salman
    Gamba, Paolo
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3505 - 3508