Optimal Parameter Selection Using Explainable AI for Time-Series Anomaly Detection

被引:0
|
作者
Sumita, Shimon [1 ]
Nakagawa, Hiroyuki [1 ]
Tsuchiya, Tatsuhiro [1 ]
机构
[1] Osaka Univ, Osaka, Japan
关键词
Time-series anomaly detection; Self-adaptive anomaly detection; Explainable AI (XAI);
D O I
10.1007/978-3-031-21203-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time-series anomaly detection is a technique for detecting unusual values, changes, or movements in a large amount of data arranged in time-series. It is primarily used in the fields of intrusion detection, medical diagnosis, and industrial defect damage detection and necessary to realize agents that operate intelligently and autonomously, such as changing system behavior based on detected anomalies. SALAD is a real-time time-series anomaly detection method based on deep learning. It is lightweight and determines anomaly detection threshold flexibly; however, experts need to determine an appropriate value for a parameter so that it suits any given recurrent time series, and this inhibits the realization of the agent. In this study, we propose a method to determine automatically the optimal parameter value in SALAD's prediction model by utilizing XAI. We use SHAP, which provides interpretability to the prediction by the deep learning model. Through evaluation experiment, we demonstrate that our method is effective and provide an example of the use of XAI for time-series anomaly detection.
引用
收藏
页码:281 / 296
页数:16
相关论文
共 50 条
  • [31] Reconstructive reservoir computing for anomaly detection in time-series signals
    Kato, Junya
    Tanaka, Gouhei
    Nakane, Ryosho
    Hirose, Akira
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2024, 15 (01): : 183 - 204
  • [32] A Modified DBSCAN Algorithm for Anomaly Detection in Time-series Data with
    Jain, Praphula
    Bajpai, Mani Shankar
    Pamula, Rajendra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (01) : 23 - 28
  • [33] Deep Quantile Regression for Unsupervised Anomaly Detection in Time-Series
    Tambuwal A.I.
    Neagu D.
    SN Computer Science, 2021, 2 (6)
  • [34] Anomaly Detection from Multivariate Time-Series with Sparse Representation
    Takeishi, Naoya
    Yairi, Takehisa
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2651 - 2656
  • [35] Time-Series Few Shot Anomaly Detection for HVAC Systems
    Huang, Yuxin
    Coursey, Austin
    Quinones-Grueiro, Marcos
    Biswas, Gautam
    IFAC PAPERSONLINE, 2024, 58 (04): : 426 - 431
  • [36] Generic and Scalable Framework for Automated Time-series Anomaly Detection
    Laptev, Nikolay
    Amizadeh, Saeed
    Flint, Ian
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1939 - 1947
  • [37] Anomaly Detection in COVID-19 Time-Series Data
    Homayouni H.
    Ray I.
    Ghosh S.
    Gondalia S.
    Kahn M.G.
    SN Computer Science, 2021, 2 (4)
  • [38] Non-Pattern-Based Anomaly Detection in Time-Series
    Tkach, Volodymyr
    Kudin, Anton
    Kebande, Victor R. R.
    Baranovskyi, Oleksii
    Kudin, Ivan
    ELECTRONICS, 2023, 12 (03)
  • [39] Time-Series Deep Learning Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Bortolato, Damiano
    Martinelli, Valentina
    Savarese, Giovanni
    Susto, Gian Antonio
    IFAC PAPERSONLINE, 2023, 56 (02): : 1566 - 1571
  • [40] Contrastive time-series reconstruction method for satellite anomaly detection
    Li, Zhenyu
    Song, Yuchen
    Peng, Xiyuan
    Liu, Datong
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2024, 45 (04): : 17 - 26