Microstructure and enhanced strength-ductility of TiNbCu alloys produced by laser powder bed fusion

被引:7
|
作者
Jin, Jianbo [1 ]
Yang, Huan [2 ]
Liu, Yujing [3 ]
Yang, Junjie [1 ]
Li, Kunmao [1 ]
Yi, Yanliang [1 ]
Chen, Dongchu [4 ]
Zhang, Wencai [5 ]
Zhou, Shengfeng [1 ,6 ]
机构
[1] Jinan Univ, Inst Adv Wear & Corros Resistance & Funct Mat, Guangzhou 510632, Peoples R China
[2] Shenzhen Technol Univ, Sino German Coll Intelligent Mfg, Shenzhen 518118, Peoples R China
[3] Changsha Univ Sci & Technol, Inst Met, Coll Mat Sci & Engn, 960,2 Sect,Wanjiali RD, Changsha 410004, Hunan, Peoples R China
[4] Foshan Univ, Sch Mat Sci & Energy Engn, Foshan 52800, Guangdong, Peoples R China
[5] Jinan Univ, Affiliated Hosp 1, Dept Orthoped, Guangzhou 510632, Peoples R China
[6] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser powder bed fusion (L-PBF); Mechanical properties; Ti2Cu; Tensile strength; Grain boundaries; TI-NB ALLOYS; ANTIBACTERIAL PROPERTIES; MECHANICAL-BEHAVIOR; IN-VITRO; TITANIUM-ALLOY; CORROSION; PRECIPITATION; CYTOTOXICITY; PERFORMANCE; DEPOSITION;
D O I
10.1016/j.msea.2023.145889
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The beta-type Ti35NbxCu alloys (x = 0, 1, 3, 5, and 7 wt%) were produced by laser powder bed fusion (LPBF) and the influence of Cu content on the microstructure and mechanical properties was studied. The results indicate that when the content of Cu is less than 3 wt%, Cu can diffuse completely into the Ti matrix to form solid solution without element segregation. Moreover, the elastic modulus of Ti35Nb1Cu alloy (49.1 +/- 1.6 GPa) is reduced by 33 % compared to that of Ti35Nb alloy (73.2 +/- 1.4 GPa). When the content of Cu exceeds 3 wt%, the eutectoid reaction is activated during the cyclic heating and rapid cooling of LPBF, and the partially supersaturated beta phase is transformed into nano-scale alpha and Ti2Cu phases (beta ->alpha+Ti2Cu). Nano-scale Ti2Cu particles precipitated along beta grain boundary results in a pinning effect, which inhibits the growth of beta grain, hinders dislocation movement, and improves the strength of the alloy. However, when the content of Cu is 7 wt%, the dislocation density (4.179 x 1015 m  2) and the ratio of brittle phase Ti2Cu (8.5 %) are too high, and the stress concentration caused by the initiation of inherent micro-cracks are the main reason for the tensile brittle fracture of Ti35Nb7Cu alloy. As such, the Ti35Nb5Cu alloy has the highest tensile strength of 867.3 +/- 24 MPa and the elongation reaches 11.7 +/- 0.5 %. Therefore, solution strengthening of Cu, fine grain strengthening of beta, dislocation strengthening, and precipitation strengthening of Ti2Cu are the main reasons for the excellent comprehensive mechanical properties of Ti35Nb5Cu alloy.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Enhanced strength-ductility synergy in super duplex stainless steel matrix composites with bimodal austenite grains via laser powder bed fusion
    Fang, Yongjian
    Kim, Min-Kyeom
    Zhang, Yali
    Jin, Huiying
    Duan, Ziyang
    Yuan, Quan
    Suhr, Jonghwan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 928
  • [12] Crack inhibition to enhance strength-ductility of CM247LC alloy fabricated by laser powder bed fusion
    Liu, Linqing
    Wang, Di
    Deng, Guowei
    Liu, Zhenyu
    Tan, Chaolin
    Zhou, Xin
    Han, Changjun
    Jiang, Renwu
    Yang, Yongqiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 875
  • [13] Heterostructured alloys with enhanced strength-ductility synergy through laser-cladding
    Kim, Rae Eon
    Kim, Eun Seong
    Karthik, Gangaraju Manogna
    Gu, Gang Hee
    Ahn, Soung Yeoul
    Park, Hyojin
    Moon, Jongun
    Kim, Hyoung Seop
    SCRIPTA MATERIALIA, 2022, 215
  • [14] Enhanced strength-ductility synergy of laser powder bed fused Inconel 718 via tailoring grain structure and precipitates
    Zhang, Z. X.
    Wan, H. Y.
    Hu, Q. D.
    Chen, W.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 885
  • [15] Microstructure Evolution and High Strength-Ductility Synergy of Ti-13Nb-13Zr-2Ta Alloy Fabricated by Laser Powder Bed Fusion
    Zhou, Libo
    Peng, Biao
    Chen, Jian
    Ren, Yanjie
    Niu, Yan
    Qiu, Wei
    Tang, Jianzhong
    Li, Zhou
    Chen, Wei
    Huang, Weiying
    Li, Cong
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2024, 37 (12) : 2029 - 2044
  • [16] Microstructural mechanisms endowing high strength-ductility synergy in CoCrNi medium entropy alloy prepared by laser powder bed fusion
    Yi, Mengling
    Tu, Jian
    Yang, Li
    Zhou, Zhiming
    Chen, Siqi
    Ding, Lipeng
    Du, Yanbin
    Qiu, Yingkun
    Liang, Yanxiang
    ADDITIVE MANUFACTURING, 2024, 87
  • [17] Disrupting variant selection memory effect in laser powder bed fusion to improve strength-ductility synergy of Ti-6Al-4V alloys
    Yang, C.
    Liu, B.
    Pan, L.L.
    Yang, Y.
    Zhou, Y.
    Cai, W.S.
    Liu, Le-hua
    Journal of Materials Science and Technology, 2025, 219 : 19 - 32
  • [18] New insight into tailorable eutectic high entropy alloys with remarkable strength-ductility synergy and ample shaping freedom fabricated using laser powder bed fusion
    Guo, Yinuo
    Su, Haijun
    Yang, Peixin
    Shen, Zhonglin
    Zhao, Di
    Zhao, Yong
    Liu, Yuan
    Zhou, Haotian
    ADDITIVE MANUFACTURING, 2022, 60
  • [19] Microstructure and Mechanical Properties of CoFeNiCuMn High-Entropy Alloys Produced by Laser Powder Bed Fusion
    Altinok, Sertac
    Buscher, Martin
    Beckers, Marco
    Kalay, Yunus Eren
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2024, 13 (04) : 711 - 729
  • [20] Increasing the build rate of high-strength aluminium alloys produced by laser powder bed fusion
    Del Guercio, Giuseppe
    Simonelli, Marco
    OPTICS AND LASER TECHNOLOGY, 2023, 161