Recent advances in hole-spin qubits

被引:15
|
作者
Fang, Yinan [1 ]
Philippopoulos, Pericles [2 ]
Culcer, Dimitrie [3 ,4 ]
Coish, W. A. [5 ]
Chesi, Stefano [6 ,7 ]
机构
[1] Yunnan Univ, Sch Phys & Astron, Kunming 650091, Peoples R China
[2] NanoAcad Technol Inc, Brossard, PQ, Canada
[3] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[4] Univ New South Wales, Ctr Excellence Future Low Energy Elect Technol, Australian Res Council, Sydney, NSW 2052, Australia
[5] McGill Univ, Dept Phys, Montreal, PQ, Canada
[6] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[7] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
来源
MATERIALS FOR QUANTUM TECHNOLOGY | 2023年 / 3卷 / 01期
基金
中国国家自然科学基金; 澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
quantum information; hole-spin qubits; semiconductors; spin-orbit and hyperfine interactions; DOUBLE-QUANTUM DOT; ELECTRICAL CONTROL; SEMICONDUCTORS; COMPUTATION; RESONANCE; COHERENCE; BLOCKADE; GROWTH; STATES; NOISE;
D O I
10.1088/2633-4356/acb87e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, hole-spin qubits based on semiconductor quantum dots have advanced at a rapid pace. We first review the main potential advantages of these hole-spin qubits with respect to their electron-spin counterparts and give a general theoretical framework describing them. The basic features of spin-orbit coupling and hyperfine interaction in the valence band are discussed, together with consequences on coherence and spin manipulation. In the second part of the article, we provide a survey of experimental realizations, which spans a relatively broad spectrum of devices based on GaAs, Si and Si/Ge heterostructures. We conclude with a brief outlook.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Anisotropic exchange interaction of two hole-spin qubits
    Geyer, Simon
    Hetenyi, Bence
    Bosco, Stefano
    Camenzind, Leon C.
    Eggli, Rafael S.
    Fuhrer, Andreas
    Loss, Daniel
    Warburton, Richard J.
    Zumbuhl, Dominik M.
    Kuhlmann, Andreas V.
    [J]. NATURE PHYSICS, 2024, 20 (07) : 1152 - 1157
  • [2] Theory of hole-spin qubits in strained germanium quantum dots
    Terrazos, L. A.
    Marcellina, E.
    Wang, Zhanning
    Coppersmith, S. N.
    Friesen, Mark
    Hamilton, A. R.
    Hu, Xuedong
    Koiller, Belita
    Saraiva, A. L.
    Culcer, Dimitrie
    Capaz, Rodrigo B.
    [J]. PHYSICAL REVIEW B, 2021, 103 (12)
  • [3] Charge-Noise-Induced Dephasing in Silicon Hole-Spin Qubits
    Malkoc, Ognjen
    Stano, Peter
    Loss, Daniel
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (24)
  • [4] Berry phase induced entanglement of hole-spin qubits in a microwave cavity
    Wysokinski, Marcin M.
    Plodzien, Marcin
    Trif, Mircea
    [J]. PHYSICAL REVIEW B, 2021, 104 (04)
  • [5] Superconducting Grid-Bus Surface Code Architecture for Hole-Spin Qubits
    Nigg, Simon E.
    Fuhrer, Andreas
    Loss, Daniel
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (14)
  • [6] Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots
    Kloeffel, Christoph
    Trif, Mircea
    Stano, Peter
    Loss, Daniel
    [J]. PHYSICAL REVIEW B, 2013, 88 (24)
  • [7] Exchange interaction of hole-spin qubits in double quantum dots in highly anisotropic semiconductors
    Hetenyi, Bence
    Kloeffel, Christoph
    Loss, Daniel
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [8] Emergent linear Rashba spin-orbit coupling offers fast manipulation of hole-spin qubits in germanium
    Liu, Yang
    Xiong, Jia-Xin
    Wang, Zhi
    Ma, Wen-Long
    Guan, Shan
    Luo, Jun-Wei
    Li, Shu-Shen
    [J]. PHYSICAL REVIEW B, 2022, 105 (07)
  • [9] Toward Hole-Spin Qubits in Si p-MOSFETs within a Planar CMOS Foundry Technology
    Bellentani, L.
    Bina, M.
    Bonen, S.
    Secchi, A.
    Bertoni, A.
    Voinigescu, S. P.
    Padovani, A.
    Larcher, L.
    Troiani, F.
    [J]. PHYSICAL REVIEW APPLIED, 2021, 16 (05)
  • [10] Engineering of hole-spin polarization in nanowires
    Zuelicke, Ulrich
    Csontos, Dan
    [J]. DEVICE AND PROCESS TECHNOLOGIES FOR MICROELECTRONICS, MEMS, PHOTONICS AND NANOTECHNOLOGY IV, 2008, 6800