Toward Hole-Spin Qubits in Si p-MOSFETs within a Planar CMOS Foundry Technology

被引:9
|
作者
Bellentani, L. [1 ]
Bina, M. [2 ]
Bonen, S. [3 ]
Secchi, A. [1 ]
Bertoni, A. [1 ]
Voinigescu, S. P. [3 ]
Padovani, A. [2 ]
Larcher, L. [2 ]
Troiani, F. [1 ]
机构
[1] CNR, Ctr S3, Ist Nanosci, Via G Campi 213-A, I-41125 Modena, Italy
[2] Appl Mat MDLx Italy R&D, I-42124 Reggio Emilia, Italy
[3] Univ Toronto, Edward S Rogers Snr Dept Elect & Comp Engn, Toronto, ON M5S 3G8, Canada
基金
欧盟地平线“2020”;
关键词
QUANTUM-DOT; ELECTRON-SPIN; COHERENCE; FIDELITY;
D O I
10.1103/PhysRevApplied.16.054034
中图分类号
O59 [应用物理学];
学科分类号
摘要
Hole spins in semiconductor quantum dots represent a viable route for the implementation of electrically controlled qubits. In particular, the qubit implementation based on Si p-MOSFETs offers great potentialities in terms of integration with the control electronics and long-term scalability. Moreover, the future down scaling of these devices will possibly improve the performance of both the classical (control) and quantum components of such monolithically integrated circuits. Here, we use a multiscale approach to simulate a hole-spin qubit in a down-scaled Si-channel p-MOSFET, the structure of which is based on a commercial 22-nm fully depleted silicon-on-insulator device. Our calculations show the formation of well-defined hole quantum dots within the Si channel and the possibility of a general electrical control, with Rabi frequencies of the order of 100 MHz for realistic field values. A crucial role of the channel aspect ratio is also demonstrated, as well as the presence of a favorable parameter range for the qubit manipulation.
引用
收藏
页数:15
相关论文
共 16 条
  • [1] Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots
    Kloeffel, Christoph
    Trif, Mircea
    Stano, Peter
    Loss, Daniel
    [J]. PHYSICAL REVIEW B, 2013, 88 (24)
  • [2] A flexible 300 mm integrated Si MOS platform for electron- and hole-spin qubits exploration
    Li, R.
    Stuyck, N. I. Dumoulin
    Kubicek, S.
    Jussot, J.
    Chan, B. T.
    Mohiyaddin, F. A.
    Elsayed, A.
    Shehata, M.
    Simion, G.
    Godfrin, C.
    Canvel, Y.
    Ivanov, Ts
    Goux, L.
    Govoreanu, B.
    Radu, I. P.
    [J]. 2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [3] Impacts of additive uniaxial strain on hole mobility in bulk Si and strained-Si p-MOSFETs
    赵硕
    郭磊
    王敬
    许军
    刘志弘
    [J]. Journal of Semiconductors, 2009, 30 (10) : 27 - 32
  • [4] Impacts of additive uniaxial strain on hole mobility in bulk Si and strained-Si p-MOSFETs
    Zhao Shuo
    Guo Lei
    Wang Jing
    Xu Jun
    Liu Zhihong
    [J]. JOURNAL OF SEMICONDUCTORS, 2009, 30 (10)
  • [5] Hole mobility enhancement in strained-Si p-MOSFETs under high vertical field
    Indian Inst of Technology, Kharagpur, India
    [J]. Solid State Electron, 12 (1863-1869):
  • [6] Hole mobility enhancement in strained-Si p-MOSFETs under high vertical field
    Maiti, CK
    Bera, LK
    Dey, SS
    Nayak, DK
    Chakrabarti, NB
    [J]. SOLID-STATE ELECTRONICS, 1997, 41 (12) : 1863 - 1869
  • [7] Technology CAD Simulations of Hot-Carrier Degradation in Strained-Si p-MOSFETs
    Maiti, C. K.
    Das, S.
    Dash, T. P.
    [J]. PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON 2017 DEVICES FOR INTEGRATED CIRCUIT (DEVIC), 2017, : 331 - 335
  • [8] Full Band Monte Carlo Study for Two-Dimensional Hole Transport in Strained Si p-MOSFETs
    Hiroshi Nakatsuji
    Yoshinari Kamakura
    Kenji Taniguchi
    [J]. Journal of Computational Electronics, 2003, 2 : 109 - 112
  • [9] Full Band Monte Carlo Study for Two-Dimensional Hole Transport in Strained Si p-MOSFETs
    Nakatsuji, Hiroshi
    Kamakura, Yoshinari
    Taniguchi, Kenji
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) : 109 - 112
  • [10] Impact of Si cap, strain and temperature on the hole mobility of (s)Si/sSiGe/(s)SOI quantum-well p-MOSFETs
    Yu, W.
    Zhang, B.
    Liu, C.
    Zhao, Y.
    Wu, W. R.
    Xue, Z. Y.
    Chen, M.
    Buca, D.
    Hartmann, J. -M.
    Wang, X.
    Zhao, Q. T.
    Mantl, S.
    [J]. MICROELECTRONIC ENGINEERING, 2014, 113 : 5 - 9