Predicting the mortality of patients with Covid-19 A machine learning approach: Correspondence

被引:0
|
作者
Ayyoubzadeh, Seyed Mohammad [1 ,2 ]
机构
[1] Univ Tehran Med Sci, Sch Allied Med Sci, Dept Hlth Informat Management, Med Informat, Tehran, Iran
[2] Univ Tehran Med Sci, Sch Allied Med Sci, Hlth Informat Management Dept, 3rd Floor,17 Farredanesh Alley,Ghods St,Enghelab A, Tehran, Iran
关键词
D O I
10.1002/hsr2.1381
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Stratification of the Mortality Risk of COVID-19 Patients by using Machine Learning Algorithms
    Reuther, Janina
    Fomenko, Vlad
    Guelow, Karsten
    Reuther, Stefan
    Spreiter, Lucas
    Schmid, Stephan
    Mueller-Schilling, Martina
    INTERNIST, 2021, 62 (SUPPL 2): : 197 - 197
  • [32] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Baker, Timothy B.
    Loh, Wei-Yin
    Piasecki, Thomas M.
    Bolt, Daniel M.
    Smith, Stevens S.
    Slutske, Wendy S.
    Conner, Karen L.
    Bernstein, Steven L.
    Fiore, Michael C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [33] Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19
    Yu, Limin
    Halalau, Alexandra
    Dalal, Bhavinkumar
    Abbas, Amr E.
    Ivascu, Felicia
    Amin, Mitual
    Nair, Girish B.
    PLOS ONE, 2021, 16 (04):
  • [34] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Timothy B. Baker
    Wei-Yin Loh
    Thomas M. Piasecki
    Daniel M. Bolt
    Stevens S. Smith
    Wendy S. Slutske
    Karen L. Conner
    Steven L. Bernstein
    Michael C. Fiore
    Scientific Reports, 13
  • [35] Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
    Vaid, Akhil
    Jaladanki, Suraj K.
    Xu, Jie
    Teng, Shelly
    Kumar, Arvind
    Lee, Samuel
    Somani, Sulaiman
    Paranjpe, Ishan
    De Freitas, Jessica K.
    Wanyan, Tingyi
    Johnson, Kipp W.
    Bicak, Mesude
    Klang, Eyal
    Kwon, Young Joon
    Costa, Anthony
    Zhao, Shan
    Miotto, Riccardo
    Charney, Alexander W.
    Boettinger, Erwin
    Fayad, Zahi A.
    Nadkarni, Girish N.
    Wang, Fei
    Glicksberg, Benjamin S.
    JMIR MEDICAL INFORMATICS, 2021, 9 (01)
  • [36] Predicting COVID-19 Cases From Atmospheric Parameter Using Machine Learning Approach
    Ogunjo, S. T.
    Fuwape, I. A.
    Rabiu, A. B.
    GEOHEALTH, 2022, 6 (04):
  • [37] HATCH Score for Predicting Mortality in COVID-19 Patients
    Alici, Gokhan
    Genc, Omer
    Harbalioglu, Hazar
    Bashir, Ahmed Muhammad
    Allahverdiyev, Samir
    Yildirim, Abdullah
    Quisi, Alaa
    Urgun, Orsan Deniz
    Kurt, Ibrahim Halil
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2022, 51 (12) : 2717 - 2723
  • [38] Identified Factors in COVID-19 Patients in Predicting Mortality
    Yavuz, S.
    Duksal, F.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2024, 27 (01) : 62 - 67
  • [39] A tailored machine learning approach for mortality prediction in severe COVID-19 treated with glucocorticoids
    Salton, F.
    Rispoli, M.
    Confalonieri, P.
    De Nes, A.
    Spagnol, E.
    Salotti, A.
    Ruaro, B.
    Harari, S.
    Rocca, A.
    d'Onofrio, A.
    Manzoni, L.
    Confalonieri, M.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2024, 28 (09) : 439 - 445
  • [40] COVID-19 ICU mortality prediction: a machine learning approach using SuperLearner algorithm
    Lorenzoni G.
    Sella N.
    Boscolo A.
    Azzolina D.
    Bartolotta P.
    Pasin L.
    Pettenuzzo T.
    De Cassai A.
    Baratto F.
    Toffoletto F.
    De Rosa S.
    Fullin G.
    Peta M.
    Rosi P.
    Polati E.
    Zanella A.
    Grasselli G.
    Pesenti A.
    Navalesi P.
    Gregori D.
    Journal of Anesthesia, Analgesia and Critical Care, 1 (1):