Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach

被引:85
|
作者
Vaid, Akhil [1 ,2 ]
Jaladanki, Suraj K. [1 ,2 ]
Xu, Jie [3 ]
Teng, Shelly [1 ,2 ]
Kumar, Arvind [1 ,2 ]
Lee, Samuel [1 ,2 ]
Somani, Sulaiman [1 ,2 ]
Paranjpe, Ishan [1 ,2 ]
De Freitas, Jessica K. [1 ,2 ,4 ]
Wanyan, Tingyi [1 ,5 ,6 ]
Johnson, Kipp W. [1 ,2 ]
Bicak, Mesude [1 ,2 ,4 ]
Klang, Eyal [7 ]
Kwon, Young Joon [8 ]
Costa, Anthony [8 ]
Zhao, Shan [1 ,9 ]
Miotto, Riccardo [1 ,4 ]
Charney, Alexander W. [2 ,4 ,10 ,11 ]
Boettinger, Erwin [1 ,2 ,12 ]
Fayad, Zahi A. [13 ,14 ]
Nadkarni, Girish N. [1 ,2 ,15 ,16 ]
Wang, Fei [3 ]
Glicksberg, Benjamin S. [1 ,2 ,4 ]
机构
[1] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, 770 Lexington Ave,14th Floor, New York, NY 10065 USA
[2] Mt Sinai Clin Intelligence Ctr, New York, NY USA
[3] Weill Cornell Med, Dept Populat Hlth Sci, New York, NY USA
[4] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10065 USA
[5] Indiana Univ, Intelligent Syst Engn, Bloomington, IN USA
[6] Univ Texas Austin, Sch Informat, Austin, TX 78712 USA
[7] Icahn Sch Med Mt Sinai, Inst Healthcare Delivery Sci, Dept Populat Hlth Sci & Policy, New York, NY 10065 USA
[8] Icahn Sch Med Mt Sinai, Dept Neurol Surg, New York, NY 10065 USA
[9] Icahn Sch Med Mt Sinai, Dept Anesthesiol Perioperat & Pain Med, New York, NY 10065 USA
[10] Icahn Sch Med Mt Sinai, Pamela Sklar Div Psychiat Genom, New York, NY 10065 USA
[11] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10065 USA
[12] Univ Potsdam, Digital Hlth Ctr, Hasso Plattner Inst, Potsdam, Germany
[13] Icahn Sch Med Mt Sinai, BioMed Engn & Imaging Inst, New York, NY 10065 USA
[14] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY 10065 USA
[15] Icahn Sch Med Mt Sinai, Dept Med, New York, NY 10065 USA
[16] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
federated learning; COVID-19; machine learning; electronic health records;
D O I
10.2196/24207
中图分类号
R-058 [];
学科分类号
摘要
Background: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. Objective: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. Methods: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. Results: The LASSO(federated) model outperformed the LASSO(local) model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSO(pooled) model outperformed the LASSO federated model at all hospitals, and the MLPfederated model outperformed the MLP(pooled)( )model at 2 hospitals. Conclusions: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] SUPERVISED MACHINE LEARNING PREDICTS MORTALITY IN COVID-19 PATIENTS USING ELECTRONIC HEALTH RECORDS
    Marinaro, X.
    Meng, Z.
    Zhang, X.
    Lodaya, K.
    Hayashida, D. K.
    Munson, S.
    D'Souza, F.
    [J]. VALUE IN HEALTH, 2021, 24 : S11 - S11
  • [2] Identification and Prediction of Clinical Phenotypes in Hospitalized Patients With COVID-19: Machine Learning From Medical Records
    Velez, Tom
    Wang, Tony
    Garibaldi, Brian
    Singman, Eric
    Koutroulis, Ioannis
    [J]. JMIR FORMATIVE RESEARCH, 2023, 7
  • [3] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    [J]. HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [4] Federated Learning for AKI Prediction in COVID-19 Patients
    Jaladanki, Suraj K.
    Vaid, Akhil
    Paranjpe, Ishan
    Saha, Aparna
    Singh, Karandeep
    Chan, Lili
    Glicksberg, Benjamin S.
    Nadkarni, Girish N.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 86 - 87
  • [5] Predicting Mortality in Hospitalized COVID-19 Patients in Zambia: An Application of Machine Learning
    Mulenga, Clyde
    Kaonga, Patrick
    Hamoonga, Raymond
    Mazaba, Mazyanga Lucy
    Chabala, Freeman
    Musonda, Patrick
    [J]. GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS, 2023, 2023
  • [6] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Baker, Timothy B.
    Loh, Wei-Yin
    Piasecki, Thomas M.
    Bolt, Daniel M.
    Smith, Stevens S.
    Slutske, Wendy S.
    Conner, Karen L.
    Bernstein, Steven L.
    Fiore, Michael C.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Timothy B. Baker
    Wei-Yin Loh
    Thomas M. Piasecki
    Daniel M. Bolt
    Stevens S. Smith
    Wendy S. Slutske
    Karen L. Conner
    Steven L. Bernstein
    Michael C. Fiore
    [J]. Scientific Reports, 13
  • [8] Machine learning prediction of COVID-19 mortality in cancer patients.
    Dienstmann, Rodrigo
    Menezes, Marcia
    e Silva, Matheus Costa
    Cruz, Heloisa
    Paes, Rafael
    da Silva, Jussaine Alves
    Messias, Anna Carolina R.
    De Marchi, Pedro
    Canedo, Jorge Alexandre
    De Melo, Andreia Cristina
    Jacome, Alexandre A.
    Reinert, Tomas
    Figueiredo Ferreira, Barbara Sodre
    Mathias, Clarissa
    Barrios, Carlos H.
    Ferreira, Carlos G. M.
    Ferrari, Bruno Lemos
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [9] Deep learning approach for early prediction of COVID-19 mortality using chest X-ray and electronic health records
    Seung Min Baik
    Kyung Sook Hong
    Dong Jin Park
    [J]. BMC Bioinformatics, 24
  • [10] Deep learning approach for early prediction of COVID-19 mortality using chest X-ray and electronic health records
    Baik, Seung Min
    Hong, Kyung Sook
    Park, Dong Jin
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)