Gaussian transformation enhanced semi-supervised learning for sleep stage classification

被引:2
|
作者
Guo, Yifan [1 ]
Mao, Helen X. [2 ]
Yin, Jijun [1 ]
Mao, Zhi-Hong [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[2] North Allegheny Sr High Sch, Wexford, PA 15090 USA
[3] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA
关键词
Gaussian transformation; Semi-supervised learning; Sleep stage classification; DOMAIN GENERALIZATION; FEATURES; ENTROPY;
D O I
10.1186/s40537-023-00758-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sleep disorders are significant health concerns affecting a large population. Related clinical studies face the deficiency in sleep data and challenges in data analysis, which requires enormous human expertise and labor. Moreover, in current clinical practice, sleep data acquisition processes usually cover only one night's sleep history, which is too short to recognize long-term sleep patterns. To address these challenges, we propose a semi-supervised learning (cluster-then-label) approach for sleep stage classification, integrating clustering algorithms into the supervised learning pipeline. We test the effectiveness of the proposed semi-supervised learning approach on two architectures: an advanced architecture using deep learning for classification and k-means for clustering, and a relatively naive Gaussian-based architecture. Also, we introduce two novel Gaussian transformations to improve the robustness and accuracy of the Gaussian-based architecture: assembled-fixed transformation and neural network based transformation. We reveal the effectiveness of the proposed algorithm via experiments on whole-night electroencephalogram (EEG) data. The experiments demonstrate that the proposed learning strategy improves the accuracy and F1 score over the state-of-the-art baseline on out-of-distribution human subjects. The experiments also confirm that the proposed Gaussian transformations can significantly gain normality to EEG band-power features and in turn facilitate the semi-supervised learning process. This cluster-then-label learning approach, combined with novel Gaussian transformations, can significantly improve the accuracy and efficiency of sleep stage classification, enabling more effective diagnosis of sleep disorders.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [41] Semi-Supervised Classification Using Sparse Gaussian Process Regression
    Patel, Amrish
    Sundararajan, S.
    Shevade, Shirish
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1193 - 1198
  • [42] Text classification with enhanced semi-supervised fuzzy clustering
    Keswani, G
    Hall, LO
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 621 - 626
  • [43] SEMI-SUPERVISED DEEP LEARNING FOR OBJECT TRACKING AND CLASSIFICATION
    Doulamis, Nikolaos
    Doulamis, Anastasios
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 848 - 852
  • [44] Deep semi-supervised learning for brain tumor classification
    Chenjie Ge
    Irene Yu-Hua Gu
    Asgeir Store Jakola
    Jie Yang
    BMC Medical Imaging, 20
  • [45] A Semi-supervised Learning Approach for Microblog Sentiment Classification
    Yu, Zhiwei
    Wong, Raymond K.
    Chi, Chi-Hung
    Chen, Fang
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 339 - 344
  • [46] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [47] LANDSLIDE IMAGE CLASSIFICATION USING SEMI-SUPERVISED LEARNING
    He, Shi
    Jing, Haitao
    Tang, Hong
    Shen, Li
    Tao, Liangliang
    Cheng, Jiehai
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2643 - 2645
  • [48] Combinative hypergraph learning for semi-supervised image classification
    Wei, Binghui
    Cheng, Ming
    Wang, Cheng
    Li, Jonathan
    NEUROCOMPUTING, 2015, 153 : 271 - 277
  • [49] Active semi-supervised learning for biological data classification
    Camargo, Guilherme
    Bugatti, Pedro H.
    Saito, Priscila T. M.
    PLOS ONE, 2020, 15 (08):
  • [50] Application of semi-supervised learning to evaluative expression classification
    Suzuki, Y
    Takamura, H
    Okumura, M
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2006, 3878 : 502 - 513