Gaussian transformation enhanced semi-supervised learning for sleep stage classification

被引:2
|
作者
Guo, Yifan [1 ]
Mao, Helen X. [2 ]
Yin, Jijun [1 ]
Mao, Zhi-Hong [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[2] North Allegheny Sr High Sch, Wexford, PA 15090 USA
[3] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA
关键词
Gaussian transformation; Semi-supervised learning; Sleep stage classification; DOMAIN GENERALIZATION; FEATURES; ENTROPY;
D O I
10.1186/s40537-023-00758-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sleep disorders are significant health concerns affecting a large population. Related clinical studies face the deficiency in sleep data and challenges in data analysis, which requires enormous human expertise and labor. Moreover, in current clinical practice, sleep data acquisition processes usually cover only one night's sleep history, which is too short to recognize long-term sleep patterns. To address these challenges, we propose a semi-supervised learning (cluster-then-label) approach for sleep stage classification, integrating clustering algorithms into the supervised learning pipeline. We test the effectiveness of the proposed semi-supervised learning approach on two architectures: an advanced architecture using deep learning for classification and k-means for clustering, and a relatively naive Gaussian-based architecture. Also, we introduce two novel Gaussian transformations to improve the robustness and accuracy of the Gaussian-based architecture: assembled-fixed transformation and neural network based transformation. We reveal the effectiveness of the proposed algorithm via experiments on whole-night electroencephalogram (EEG) data. The experiments demonstrate that the proposed learning strategy improves the accuracy and F1 score over the state-of-the-art baseline on out-of-distribution human subjects. The experiments also confirm that the proposed Gaussian transformations can significantly gain normality to EEG band-power features and in turn facilitate the semi-supervised learning process. This cluster-then-label learning approach, combined with novel Gaussian transformations, can significantly improve the accuracy and efficiency of sleep stage classification, enabling more effective diagnosis of sleep disorders.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [31] Malware Classification Based on Semi-Supervised Learning
    Ding, Yu
    Zhang, XiaoYu
    Li, BinBin
    Xing, Jian
    Qiang, Qian
    Qi, ZiSen
    Guo, MengHan
    Jia, SiYu
    Wang, HaiPing
    SCIENCE OF CYBER SECURITY, SCISEC 2022, 2022, 13580 : 287 - 301
  • [32] News Classification with Semi-Supervised and Active Learning
    Guo C.
    Chao Y.
    Data Analysis and Knowledge Discovery, 2022, 6 (04) : 28 - 38
  • [33] Deep graph learning for semi-supervised classification
    Lin, Guangfeng
    Kang, Xiaobing
    Liao, Kaiyang
    Zhao, Fan
    Chen, Yajun
    PATTERN RECOGNITION, 2021, 118
  • [34] Spectral Kernel Learning for Semi-Supervised Classification
    Liu, Wei
    Qian, Buyue
    Cui, Jingyu
    Liu, Jianzhuang
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1150 - 1155
  • [35] Semi-supervised learning for Bayesian pattern classification
    Center, JL
    Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, 803 : 517 - 524
  • [36] Semi-supervised Metric Learning for Image Classification
    Hu, Jiwei
    Sun, ChenSheng
    Kin Man Lam
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT II, 2010, 6298 : 728 - 735
  • [37] A NOVEL SEMI-SUPERVISED LEARNING FOR SMS CLASSIFICATION
    Ahmed, Ishtiaq
    Guan, Donghai
    Chung, Teachoong
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2014, : 856 - 861
  • [38] Gaussian fields for semi-supervised regression and correspondence learning
    Verbeek, Jakob J.
    Vlassis, Nikos
    PATTERN RECOGNITION, 2006, 39 (10) : 1864 - 1875
  • [39] Bayesian Semi-supervised Learning with Graph Gaussian Processes
    Ng, Yin Cheng
    Colombo, Nicolo
    Silva, Ricardo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [40] Semi-Supervised Feature Transformation for Tissue Image Classification
    Watanabe, Kenji
    Kobayashi, Takumi
    Wada, Toshikazu
    PLOS ONE, 2016, 11 (12):