Gaussian transformation enhanced semi-supervised learning for sleep stage classification

被引:2
|
作者
Guo, Yifan [1 ]
Mao, Helen X. [2 ]
Yin, Jijun [1 ]
Mao, Zhi-Hong [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[2] North Allegheny Sr High Sch, Wexford, PA 15090 USA
[3] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA
关键词
Gaussian transformation; Semi-supervised learning; Sleep stage classification; DOMAIN GENERALIZATION; FEATURES; ENTROPY;
D O I
10.1186/s40537-023-00758-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sleep disorders are significant health concerns affecting a large population. Related clinical studies face the deficiency in sleep data and challenges in data analysis, which requires enormous human expertise and labor. Moreover, in current clinical practice, sleep data acquisition processes usually cover only one night's sleep history, which is too short to recognize long-term sleep patterns. To address these challenges, we propose a semi-supervised learning (cluster-then-label) approach for sleep stage classification, integrating clustering algorithms into the supervised learning pipeline. We test the effectiveness of the proposed semi-supervised learning approach on two architectures: an advanced architecture using deep learning for classification and k-means for clustering, and a relatively naive Gaussian-based architecture. Also, we introduce two novel Gaussian transformations to improve the robustness and accuracy of the Gaussian-based architecture: assembled-fixed transformation and neural network based transformation. We reveal the effectiveness of the proposed algorithm via experiments on whole-night electroencephalogram (EEG) data. The experiments demonstrate that the proposed learning strategy improves the accuracy and F1 score over the state-of-the-art baseline on out-of-distribution human subjects. The experiments also confirm that the proposed Gaussian transformations can significantly gain normality to EEG band-power features and in turn facilitate the semi-supervised learning process. This cluster-then-label learning approach, combined with novel Gaussian transformations, can significantly improve the accuracy and efficiency of sleep stage classification, enabling more effective diagnosis of sleep disorders.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] Gaussian transformation enhanced semi-supervised learning for sleep stage classification
    Yifan Guo
    Helen X. Mao
    Jijun Yin
    Zhi-Hong Mao
    Journal of Big Data, 10
  • [2] Semi-Supervised Learning by Gaussian Mixtures
    Choi, Byoung-Jeong
    Chae, Youn-Seok
    Choi, Woo-Young
    Park, Changyi
    Koo, Ja-Yong
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (05) : 825 - 833
  • [3] Semi-supervised Learning with Gaussian Processes
    Li, Hongwei
    Li, Yakui
    Lu, Hanqing
    PROCEEDINGS OF THE 2008 CHINESE CONFERENCE ON PATTERN RECOGNITION (CCPR 2008), 2008, : 13 - 17
  • [4] Semi-Supervised Learning for ECG Classification
    Rodrigues, Rui
    Couto, Paula
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [5] Augmentation Learning for Semi-Supervised Classification
    Frommknecht, Tim
    Zipf, Pedro Alves
    Fan, Quanfu
    Shvetsova, Nina
    Kuehne, Hilde
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 85 - 98
  • [6] Semi-Supervised Learning for Classification with Uncertainty
    Zhang, Rui
    Liu, Tong-bo
    Zheng, Ming-wen
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 3584 - 3590
  • [7] Gaussian processes classification combined with semi-supervised kernels
    Li, Hong-Wei
    Liu, Yang
    Lu, Han-Qing
    Fang, Yi-Kai
    Zidonghua Xuebao/ Acta Automatica Sinica, 2009, 35 (07): : 888 - 895
  • [8] Semi-described and semi-supervised learning with Gaussian processes
    Damianou, Andreas
    Lawrence, Neil D.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 228 - 237
  • [9] Enhanced manifold regularization for semi-supervised classification
    Gan, Haitao
    Luo, Zhizeng
    Fan, Yingle
    Sang, Nong
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (06) : 1207 - 1213
  • [10] Spectral Transformation Approaches To Semi-supervised Learning
    Hu, Chonghai
    Wang, Chengqun
    Liu, Kangsheng
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 207 - +