Orbits closeness for slowly mixing dynamical systems

被引:0
|
作者
Rousseau, Jerome [1 ,2 ,3 ]
Todd, Mike [4 ]
机构
[1] Acad Mil St Cyr Coetquidan, Acad Mil St Cyr Coetquidan, F-56381 Guer, France
[2] Univ Rennes 1, IRMAR, CNRS UMR 6625, F-35042 Rennes, France
[3] Univ Fed Bahia, Dept Matemat, Ave Ademar Barros S-N, BR-40170110 Salvador, BA, Brazil
[4] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Scotland
关键词
shortest distance; longest common substring; correlation dimension; inducing schemes; MULTIFRACTAL ANALYSIS; CORRELATION DIMENSION; RECURRENCE; SPECTRUM;
D O I
10.1017/etds.2023.50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a dynamical system, we prove that the shortest distance between two n-orbits scales like n to a power even when the system has slow mixing properties, thus building and improving on results of Barros, Liao and the first author [On the shortest distance between orbits and the longest common substring problem. Adv. Math. 344 (2019), 311-339]. We also extend these results to flows. Finally, we give an example for which the shortest distance between two orbits has no scaling limit.
引用
收藏
页码:1192 / 1208
页数:17
相关论文
共 50 条
  • [21] DIOPHANTINE APPROXIMATION OF THE ORBITS IN TOPOLOGICAL DYNAMICAL SYSTEMS
    Ma, Chao
    Wang, Baowei
    Wu, Jun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (05) : 2455 - 2471
  • [22] DIRECTING ORBITS OF CHAOTIC DYNAMICAL-SYSTEMS
    PASKOTA, M
    MEES, AI
    TEO, KL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (02): : 573 - 583
  • [23] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, Bastien
    Morante, Antonio
    Dynamical Systems, 2001, 16 (03) : 247 - 252
  • [24] On manifolds of connecting orbits in discretizations of dynamical systems
    Zou, YK
    Beyn, WJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (05) : 1499 - 1520
  • [25] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, B
    Morante, A
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (03): : 247 - 252
  • [26] Contraction of orbits in random dynamical systems on the circle
    V. A. Kleptsyn
    M. B. Nalskii
    Functional Analysis and Its Applications, 2004, 38 : 267 - 282
  • [27] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [28] INVARIANT SPECTRA OF ORBITS IN DYNAMICAL-SYSTEMS
    VOGLIS, N
    CONTOPOULOS, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (14): : 4899 - 4909
  • [29] ORBITS OF POLYNOMIAL DYNAMICAL SYSTEMS MODULO PRIMES
    Chang, Mei-Chu
    D'Andrea, Carlos
    Ostafe, Alina
    Shparlinski, Igor E.
    Sombra, Martin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) : 2015 - 2025
  • [30] Contraction of orbits in random dynamical systems on the circle
    Kleptsyn, VA
    Nalskii, MB
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2004, 38 (04) : 267 - 282