We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie-Poisson structure. By a coordinate transformation, the nonlocal Lie-Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrodinger (NNLS) equation. According to the Hamilton-Jacobi theory, we obtain the action-angle-type coordinates and the inversion problems related to Lie-Poisson Hamiltonian systems.
机构:
E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R ChinaE China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
Xin Xiang-Peng
Miao Qian
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R ChinaE China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
Miao Qian
Chen Yong
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R ChinaE China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
机构:
China Univ Min & Technol, Beijing 100083, Peoples R China
Shijiazhuang Univ, Shijiazhuang 050035, Peoples R ChinaChina Univ Min & Technol, Beijing 100083, Peoples R China
Chen Lan-Xin
Zhang Jun-Xian
论文数: 0引用数: 0
h-index: 0
机构:
Shijiazhuang Univ, Shijiazhuang 050035, Peoples R ChinaChina Univ Min & Technol, Beijing 100083, Peoples R China
机构:
Zhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R ChinaZhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
Wang, Xin
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Math & Phys, Baoding 102206, Peoples R ChinaZhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
Wang, Lei
Du, Zhong
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Dept Math & Phys, Baoding 071003, Peoples R China
North China Elect Power Univ, Hebei Key Lab Phys & Energy Technol, Baoding 071003, Peoples R ChinaZhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
Du, Zhong
He, Jinman
论文数: 0引用数: 0
h-index: 0
机构:
Zhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R ChinaZhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
He, Jinman
Zhao, Jie
论文数: 0引用数: 0
h-index: 0
机构:Zhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China