A NONLOCAL FINITE-DIMENSIONAL INTEGRABLE SYSTEM RELATED TO THE NONLOCAL MKDV EQUATION

被引:0
|
作者
Wang, Xue [1 ,2 ]
Du, Dianlou [2 ]
Wang, Hui [1 ]
机构
[1] Henan Univ Engn, Coll Sci, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlocal integrable system; nonlocal mKdV equation; Lie-Poisson Hamiltonian system; action-angle type variables; NONLINEAR SCHRODINGER-EQUATIONS; DE-VRIES EQUATION; SOLITON-SOLUTIONS;
D O I
10.1134/S0040577924030024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie-Poisson structure. By a coordinate transformation, the nonlocal Lie-Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrodinger (NNLS) equation. According to the Hamilton-Jacobi theory, we obtain the action-angle-type coordinates and the inversion problems related to Lie-Poisson Hamiltonian systems.
引用
收藏
页码:370 / 387
页数:18
相关论文
共 50 条