Nonlocal critical exponent singular problems under mixed Dirichlet-Neumann boundary conditions

被引:1
|
作者
Mukherjee, Tuhina [1 ]
Pucci, Patrizia [2 ]
Sharma, Lovelesh [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur, India
[2] Univ Perugia, Dipartimento Matemat & Informat, Perugia, Italy
关键词
Fractional Laplacian; Mixed boundary conditions; Critical exponent; Singular nonlinearity; Nehari manifold; STRONG MAXIMUM PRINCIPLE; POSITIVE SOLUTIONS; FRACTIONAL LAPLACIAN; ASYMPTOTIC-BEHAVIOR; ELLIPTIC-EQUATIONS; CONCAVE; MULTIPLICITY; EXISTENCE; MODEL;
D O I
10.1016/j.jmaa.2023.127843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following singular problem, under mixed Dirichlet-Neumann boundary conditions, and involving the fractional Laplacian {(-Delta)(s)u = lambda u(-q) + u(2s)*(-1), u > 0 in Omega, (P-lambda) A(u) = 0 on partial derivative Omega = Sigma(D) boolean OR Sigma(N), where Omega R-N is a bounded domain with smooth boundary partial derivative Omega, 1/2 < s < 1, lambda. > 0 is a real parameter, 0 < q< 1, N> 2s, 2(s)* = 2N/(N - 2s) and A(u) = u chi(Sigma D) + partial derivative(v)u chi(Sigma N) partial derivative(v) = partial derivative/partial derivative v. Here Sigma(D), Sigma(N) are smooth (N - 1) dimensional submanifolds of partial derivative Omega such that Sigma(D) boolean OR Sigma(N) = partial derivative Omega, Sigma(D) boolean AND Sigma(N) = empty set and Sigma(D) boolean AND (Sigma(N)) over bar = tau' is a smooth (N - 2) dimensional submanifold of partial derivative Omega. Within a suitable range of lambda, we establish existence of at least two opposite energy solutions for (P-lambda) using the standard Nehari manifold technique. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] SINGULAR ELLIPTIC PROBLEMS WITH DIRICHLET OR MIXED DIRICHLET-NEUMANN NON-HOMOGENEOUS BOUNDARY CONDITIONS
    Godoy, Tomas
    [J]. OPUSCULA MATHEMATICA, 2023, 43 (01) : 19 - 46
  • [2] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [3] Hardy-Sobolev critical singular elliptic equations with mixed Dirichlet-Neumann boundary conditions
    Ding, Ling
    Tang, Chun-Lei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 3668 - 3689
  • [4] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    [J]. Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [5] Positive solutions for singular elliptic equations with mixed Dirichlet-Neumann boundary conditions
    Li, Yuanyuan
    Ruf, Bernhard
    Guo, Qianqiao
    Niu, Pengcheng
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (04) : 374 - 397
  • [6] SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 1208 - 1239
  • [7] Spectral problems with mixed Dirichlet-Neumann boundary conditions: Isospectrality and beyond
    Jakobson, Dmitry
    Levitin, Michael
    Nadirashvili, Nikolai
    Polterovich, Losif
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) : 141 - 155
  • [8] Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications
    Abatangelo, L.
    Felli, V
    Lena, C.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [9] On a numerical solution of one nonlocal boundary-value problem with mixed Dirichlet-Neumann conditions
    Berikelashvili, Givi
    Khomeriki, Nodar
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2013, 53 (04) : 367 - 380
  • [10] The Laplacian with mixed Dirichlet-Neumann boundary conditions on Weyl chambers
    Stempak, Krzysztof
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 329 : 348 - 370