Atomistic modeling of lithium materials from deep learning potential with ab initio accuracy

被引:1
|
作者
Wang, Haidi [1 ]
Li, Tao [1 ]
Yao, Yufan [2 ]
Liu, Xiaofeng [1 ]
Zhu, Weiduo [1 ]
Chen, Zhao [1 ]
Li, Zhongjun [1 ]
Hu, Wei [2 ]
机构
[1] Hefei Univ Technol, Sch Phys, Hefei 230091, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Deep learning; Lithium; Density functional theory; Potential energy surface; EMBEDDED-ATOM METHOD; MOLECULAR-DYNAMICS; QUANTUM; SUPERCONDUCTIVITY; APPROXIMATION; ENERGY; PHASES;
D O I
10.1063/1674-0068/cjcp2211173
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Lithium has been paid great attention in recent years thanks to its significant applications for battery and lightweight alloy. Developing a potential model with high accuracy and efficiency is important for theoretical simulation of lithium materials. Here, we build a deep learning potential (DP) for elemental lithium based on a concurrent-learning scheme and DP representation of the density-functional theory (DFT) potential energy surface (PES), the DP model enables material simulations with close-to DFT accuracy but at much lower computational cost. The simulations show that basic parameters, equation of states, elasticity, defects and surface are consistent with the first principles results. More notably, the liquid radial distribution function based on our DP model is found to match well with experiment data. Our results demonstrate that the developed DP model can be used for the simulation of lithium materials.
引用
收藏
页码:573 / 581
页数:9
相关论文
共 50 条
  • [1] A short perspective of modeling electrode materials in lithium-ion batteries by the ab initio atomistic thermodynamics approach
    Exner, Kai S.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (10) : 3111 - 3117
  • [2] A short perspective of modeling electrode materials in lithium-ion batteries by the ab initio atomistic thermodynamics approach
    Kai S. Exner
    [J]. Journal of Solid State Electrochemistry, 2018, 22 : 3111 - 3117
  • [3] Deep learning geometrical potential for high-accuracy ab initio protein structure prediction
    Li, Yang
    Zhang, Chengxin
    Yu, Dong-Jun
    Zhang, Yang
    [J]. ISCIENCE, 2022, 25 (06)
  • [4] Automated atomistic simulations of dissociated dislocations with ab initio accuracy
    Mismetti, L.
    Hodapp, M.
    [J]. PHYSICAL REVIEW B, 2024, 109 (09)
  • [5] Universal machine learning potential accelerates atomistic modeling of materials
    Zhongheng Fu
    Dawei Zhang
    [J]. Journal of Energy Chemistry, 2023, 83 (08) : 1 - 2
  • [6] Universal machine learning potential accelerates atomistic modeling of materials
    Fu, Zhongheng
    Zhang, Dawei
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 1 - 2
  • [7] Deep learning chemistry ab initio
    Gabriella Graziano
    [J]. Nature Reviews Chemistry, 2020, 4 : 564 - 564
  • [8] Deep learning chemistry ab initio
    Graziano, Gabriella
    [J]. NATURE REVIEWS CHEMISTRY, 2020, 4 (11) : 564 - 564
  • [9] Atomistic Diffusion Pathways of Lithium Ions in Crystalline Lithium Silicides from ab Initio Molecular Dynamics Simulations
    Kirsch, Christoph
    Dressler, Christian
    Sebastiani, Daniel
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (29): : 12136 - 12149
  • [10] A deep learning interatomic potential developed for atomistic simulation of carbon materials
    Wang, Jinjin
    Shen, Hong
    Yang, Riyi
    Xie, Kun
    Zhang, Chao
    Chen, Liangyao
    Ho, Kai-Ming
    Wang, Cai-Zhuang
    Wang, Songyou
    [J]. Carbon, 2022, 186 : 1 - 8