Atomistic modeling of lithium materials from deep learning potential with ab initio accuracy

被引:2
|
作者
Wang, Haidi [1 ]
Li, Tao [1 ]
Yao, Yufan [2 ]
Liu, Xiaofeng [1 ]
Zhu, Weiduo [1 ]
Chen, Zhao [1 ]
Li, Zhongjun [1 ]
Hu, Wei [2 ]
机构
[1] Hefei Univ Technol, Sch Phys, Hefei 230091, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Deep learning; Lithium; Density functional theory; Potential energy surface; EMBEDDED-ATOM METHOD; MOLECULAR-DYNAMICS; QUANTUM; SUPERCONDUCTIVITY; APPROXIMATION; ENERGY; PHASES;
D O I
10.1063/1674-0068/cjcp2211173
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Lithium has been paid great attention in recent years thanks to its significant applications for battery and lightweight alloy. Developing a potential model with high accuracy and efficiency is important for theoretical simulation of lithium materials. Here, we build a deep learning potential (DP) for elemental lithium based on a concurrent-learning scheme and DP representation of the density-functional theory (DFT) potential energy surface (PES), the DP model enables material simulations with close-to DFT accuracy but at much lower computational cost. The simulations show that basic parameters, equation of states, elasticity, defects and surface are consistent with the first principles results. More notably, the liquid radial distribution function based on our DP model is found to match well with experiment data. Our results demonstrate that the developed DP model can be used for the simulation of lithium materials.
引用
收藏
页码:573 / 581
页数:9
相关论文
共 50 条
  • [21] Atomistic Modeling and Ab Initio Calculations of Yttria-Stabilized Zirconia
    Umeno, Y.
    Iskandarov, A. M.
    Kubo, A.
    Albina, J-M
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 2791 - 2797
  • [22] An atomistic fingerprint algorithm for learning ab initio molecular force fields
    Tang, Yu-Hang
    Zhang, Dongkun
    Karniadakis, George Em
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (03):
  • [23] The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions
    Di Pasquale, Nicodemo
    Davie, Stuart J.
    Popelier, Paul L. A.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [24] Ab initio and empirical modeling of lithium atoms penetration into silicon
    Mikhaleva, Natalia S.
    Visotin, Maxim A.
    Popov, Zakhar I.
    Kuzubov, Alexander A.
    Fedorov, Alexander S.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 109 : 76 - 83
  • [25] 86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy
    Lu, Denghui
    Wang, Han
    Chen, Mohan
    Lin, Lin
    Car, Roberto
    E, Weinan
    Jia, Weile
    Zhang, Linfeng
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 259
  • [26] 86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy
    Lu, Denghui
    Wang, Han
    Chen, Mohan
    Lin, Lin
    Car, Roberto
    E, Weinan
    Jia, Weile
    Zhang, Linfeng
    Computer Physics Communications, 2021, 259
  • [28] Atomistic model derived from ab initio calculations tested in Benzene-Benzene interaction potential
    de Moraes, Elizane Efigenia
    Tonel, Mariana Zancan
    Fagan, Solange Binotto
    Barbosa, Marcia C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 537 (537)
  • [29] Computer simulation of solid and liquid benzene with an atomistic interaction potential derived from ab initio calculations
    Cacelli, I
    Cinacchi, G
    Prampolini, G
    Tani, A
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (43) : 14278 - 14286
  • [30] Ab initio modeling and design of vanadia-based electrode materials for post-lithium batteries
    Koch, Daniel
    Manzhos, Sergei
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (08)