Universal machine learning potential accelerates atomistic modeling of materials

被引:1
|
作者
Zhongheng Fu [1 ,2 ]
Dawei Zhang [1 ,2 ]
机构
[1] Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing
[2] National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TB30 [工程材料一般性问题]; TP181 [自动推理、机器学习];
学科分类号
0805 ; 080502 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid development of computer techniques,atomistic modeling is playing an increasingly important role in understanding the structure-activity relationship of materials.Molecular dynamics (MD) is a computational simulation approach to predicting the structural evolution of an atomic system over time,widely used to understand physical and chemical phenomena including phase transition,diffusion,crystallization,and reaction [1].
引用
收藏
页码:1 / 2
页数:2
相关论文
共 50 条
  • [1] Universal machine learning potential accelerates atomistic modeling of materials
    Fu, Zhongheng
    Zhang, Dawei
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 1 - 2
  • [2] Machine learning accelerates the materials discovery
    Fang, Jiheng
    Xie, Ming
    He, Xingqun
    Zhang, Jiming
    Hu, Jieqiong
    Chen, Yongtai
    Yang, Youcai
    Jin, Qinglin
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [3] Machine learning accelerates the materials discovery
    Fang, Jiheng
    Xie, Ming
    He, Xingqun
    Zhang, Jiming
    Hu, Jieqiong
    Chen, Yongtai
    Yang, Youcai
    Jin, Qinglin
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [4] Accelerated Atomistic Modeling of Solid-State Battery Materials With Machine Learning
    Guo, Haoyue
    Wang, Qian
    Stuke, Annika
    Urban, Alexander
    Artrith, Nongnuch
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [5] Universal machine learning for the response of atomistic systems to external fields
    Zhang, Yaolong
    Jiang, Bin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] Universal machine learning for the response of atomistic systems to external fields
    Yaolong Zhang
    Bin Jiang
    Nature Communications, 14
  • [7] Learning Matter: Materials Design with Machine Learning and Atomistic Simulations
    Axelrod, Simon
    Schwalbe-Koda, Daniel
    Mohapatra, Somesh
    Damewood, James
    Greenman, Kevin P.
    Gomez-Bombarelli, Rafael
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (03): : 343 - 357
  • [8] Atomistic modeling of lithium materials from deep learning potential with ab initio accuracy
    Wang, Haidi
    Li, Tao
    Yao, Yufan
    Liu, Xiaofeng
    Zhu, Weiduo
    Chen, Zhao
    Li, Zhongjun
    Hu, Wei
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2023, 36 (05) : 573 - 581
  • [9] Δ-EGNN Method Accelerates the Construction of Machine Learning Potential
    Huo, Jun
    Dong, Hao
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (08): : 2080 - 2088
  • [10] A universal strategy for the creation of machine learning-based atomistic force fields
    Tran Doan Huan
    Rohit Batra
    James Chapman
    Sridevi Krishnan
    Lihua Chen
    Rampi Ramprasad
    npj Computational Materials, 3