Robust Precoding for HF Skywave Massive MIMO

被引:1
|
作者
Yu, Xianglong [1 ,2 ]
Gao, Xiqi [1 ,3 ]
Lu, An-An [1 ,3 ]
Zhang, Jinlin [1 ,3 ]
Wu, Hebing [1 ,3 ]
Li, Geoffrey Ye [4 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Huawei Technol Co Ltd, Shanghai 201206, Peoples R China
[3] Purple Mt Labs, Nanjing 211100, Peoples R China
[4] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Massive MIMO; HF skywave communications; robust precoding; beam structured precoding; imperfect CSI; DOWNLINK; CHANNELS; COMMUNICATION;
D O I
10.1109/TWC.2023.3244986
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate the robust precoding with imperfect channel state information (CSI) for high frequency (HF) skywave massive multiple-input multiple-output (MIMO) communications. Starting with a sparse beam based a posteriori channel model for the available imperfect CSI at the base station (BS), we prove that the robust precoder for ergodic sum-rate maximization can be designed by optimizing the beam domain robust precoder (BDRP) without any loss of optimality. Furthermore, the asymptotic optimal precoder is beam structured for a sufficiently large number of antennas at the BS, involving a low-dimensional BDRP. As a result, the beam structured robust precoding is asymptotic optimal and can be efficiently implemented based on chirp z-transform. We then derive an iterative algorithm to design the BDRP using majorization-minimization (MM). Furthermore, we develop a low-complexity BDRP design with an ergodic sum-rate upper bound, simplifying the MM based design algorithm. Based on our simulation results, the proposed beam structured robust precoding can achieve a near-optimal performance with significantly reduced complexity in various scenarios.
引用
收藏
页码:6691 / 6705
页数:15
相关论文
共 50 条
  • [31] Robust Symbol-Level Precoding for Massive MIMO Communication Under Channel Aging
    Wang, Yafei
    Yi, Xinping
    Hou, Hongwei
    Wang, Wenjin
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 10864 - 10878
  • [32] Robust MMSE Precoding and Power Allocation for Cell-Free Massive MIMO Systems
    Palhares, Victoria M. T.
    Flores, Andre R.
    de Lamare, Rodrigo C.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (05) : 5115 - 5120
  • [33] Approximate Iteration Detection and Precoding in Massive MIMO
    Tang, Chuan
    Tao, Yerong
    Chen, Yancang
    Liu, Cang
    Yuan, Luechao
    Xing, Zuocheng
    CHINA COMMUNICATIONS, 2018, 15 (05) : 183 - 196
  • [34] A Simplified Massive MIMO Approach using Precoding
    da Silva, Mario Marques
    Dinis, Rui
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2017, : 122 - 127
  • [35] Kaczmarz Precoding and Detection for Massive MIMO Systems
    Rodrigues, Victor Croisfelt
    Marinello Filho, Jose Carlos
    Abrao, Taufik
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [36] Massive MIMO with Clustered Pilot Contamination Precoding
    Mazrouei-Sebdani, Mahmood
    Krzymien, Witold A.
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 1218 - 1222
  • [37] Hybrid Precoding for HAP Massive MIMO Systems
    Ji, Pingping
    Jiang, Lingge
    He, Chen
    He, Di
    SPACE INFORMATION NETWORKS, SINC 2019, 2020, 1169 : 255 - 263
  • [38] Hybrid Precoding for Massive mmWave MIMO System
    Liu, Xianru
    Li, Xueming
    Ca, Shu
    Deng, Qingyong
    Ran, Rong
    Nguyen, Kien
    Tingrui, Pei
    IEEE ACCESS, 2019, 7 : 33577 - 33586
  • [39] Approximate Iteration Detection and Precoding in Massive MIMO
    Chuan Tang
    Yerong Tao
    Yancang Chen
    Cang Liu
    Luechao Yuan
    Zuocheng Xing
    China Communications, 2018, 15 (05) : 183 - 196
  • [40] Adaptive Hybrid Precoding for Multiuser Massive MIMO
    Zhu, Xudong
    Wang, Zhaocheng
    Dai, Linglong
    Wang, Qi
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (04) : 776 - 779