Robust Precoding for HF Skywave Massive MIMO

被引:1
|
作者
Yu, Xianglong [1 ,2 ]
Gao, Xiqi [1 ,3 ]
Lu, An-An [1 ,3 ]
Zhang, Jinlin [1 ,3 ]
Wu, Hebing [1 ,3 ]
Li, Geoffrey Ye [4 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Huawei Technol Co Ltd, Shanghai 201206, Peoples R China
[3] Purple Mt Labs, Nanjing 211100, Peoples R China
[4] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Massive MIMO; HF skywave communications; robust precoding; beam structured precoding; imperfect CSI; DOWNLINK; CHANNELS; COMMUNICATION;
D O I
10.1109/TWC.2023.3244986
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate the robust precoding with imperfect channel state information (CSI) for high frequency (HF) skywave massive multiple-input multiple-output (MIMO) communications. Starting with a sparse beam based a posteriori channel model for the available imperfect CSI at the base station (BS), we prove that the robust precoder for ergodic sum-rate maximization can be designed by optimizing the beam domain robust precoder (BDRP) without any loss of optimality. Furthermore, the asymptotic optimal precoder is beam structured for a sufficiently large number of antennas at the BS, involving a low-dimensional BDRP. As a result, the beam structured robust precoding is asymptotic optimal and can be efficiently implemented based on chirp z-transform. We then derive an iterative algorithm to design the BDRP using majorization-minimization (MM). Furthermore, we develop a low-complexity BDRP design with an ergodic sum-rate upper bound, simplifying the MM based design algorithm. Based on our simulation results, the proposed beam structured robust precoding can achieve a near-optimal performance with significantly reduced complexity in various scenarios.
引用
下载
收藏
页码:6691 / 6705
页数:15
相关论文
共 50 条
  • [21] Robust Precoding for 3D Massive MIMO with Riemannian Manifold Optimization
    Wang, Chen
    Lu, An-An
    Gao, Xiqi
    Ding, Zhi
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1341 - 1346
  • [22] Cooperative Multistation Secure Transmission in HF Skywave Massive MIMO Communications for Wide-Area IoT Applications
    Li, Yan
    Ding, Guoru
    Wang, Haichao
    You, Li
    Yu, Xianglong
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (02) : 459 - 471
  • [23] Multigroup Multicast Precoding in Massive MIMO
    Sadeghi, Meysam
    Bjornson, Emil
    Larsson, Erik G.
    Yuen, Chau
    Marzetta, Thomas L.
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [24] Limited Feedback Precoding for Massive MIMO
    Su, Xin
    Zeng, Jie
    Li, Jingyu
    Rong, Liping
    Liu, Lili
    Xu, Xibin
    Wang, Jing
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2013, 2013
  • [25] Overview of Precoding Techniques for Massive MIMO
    Albreem, Mahmoud A.
    Al Habbash, Alaa H.
    Abu-Hudrouss, Ammar M.
    Ikki, Salama S.
    IEEE ACCESS, 2021, 9 : 60764 - 60801
  • [26] Overview of Precoding Techniques for Massive MIMO
    Albreem, Mahmoud A.
    Habbash, Alaa H. Al
    Abu-Hudrouss, Ammar M.
    Ikki, Salama S.
    IEEE Access, 2021, 9 : 60764 - 60801
  • [27] Channel Estimation for HF Skywave Massive MIMO-OFDM with Triple-Beam Based Channel Model
    Shi, Ding
    Song, Linfeng
    Zhou, Wenqi
    Gao, Xiqi
    Wang, Cheng-Xiang
    Li, Geoffrey Ye
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5402 - 5407
  • [28] Massive MIMO Linear Precoding: A Survey
    Fatema, Nusrat
    Hua, Guang
    Xiang, Yong
    Peng, Dezhong
    Natgunanathan, Iynkaran
    IEEE SYSTEMS JOURNAL, 2018, 12 (04): : 3920 - 3931
  • [29] Robust Precoding Design for Massive MIMO: An Efficient Fractional Programming-Based Approach
    Lin, Tian
    Zhu, Yu
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (12) : 2999 - 3003
  • [30] Robust Precoding for 3D Massive MIMO Configuration With Matrix Manifold Optimization
    Wang, Chen
    Lu, An-An
    Gao, Xiqi
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (05) : 3423 - 3437