Modeling Electrically Long Interconnects Using Physics-Informed Delayed Gaussian Processes

被引:5
|
作者
Garbuglia, Federico [1 ]
Reuschel, Torsten [2 ]
Schuster, Christian
Deschrijver, Dirk [1 ]
Dhaene, Tom [1 ]
Spina, Domenico [1 ,3 ,4 ]
机构
[1] Univ Ghent, Dept Informat Technol, Imec, B-9052 Ghent, Belgium
[2] Univ New Brunswick UNB, Dept Phys, Fredericton, NB E3B 5A3, Canada
[3] Hamburg Univ Technol TUHH, Inst Theoret Elekrotechn, D-21079 Hamburg, Germany
[4] Vrije Univ Brussel VUB, Dept ELEC, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Kernel; Scattering parameters; Data models; Computational modeling; Transforms; Estimation; Propagation delay; Delay estimation; Gabor transform; Gaussian processes (GP); interconnects; kernels; machine learning (ML); S-parameters;
D O I
10.1109/TEMC.2023.3317917
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a machine learning technique to model wide-band scattering parameters (S-parameters) of interconnects in the frequency domain using a new Gaussian processes (GP) model. Standard GPs with a general-purpose kernel typically assume high smoothness and therefore are not suitable to model S-parameters that are highly dynamic and oscillating due to propagation delays. The new delayed Gaussian process (tau GP) model employs a physics-informed kernel consisting of periodic components, whose fundamental frequencies are interpreted as tunable propagation delays. Then, the model hyperparameters are tuned using a combination of maximum marginal likelihood estimation (MMLE) and delay estimation using Gabor transform. The delay estimation allows one to automatically identify the optimal fundamental frequencies for the kernel, thus increasing the numerical stability of the hyperparameters tuning process. The resulting delayed Gaussian process model accurately predicts the S-parameter values at desired frequency points in the training interval. Two application examples demonstrate the increased accuracy of the new technique, compared to standard Gaussian processes, vector fitting (VF), and delayed vector fitting (DVF) rational models.
引用
收藏
页码:1715 / 1723
页数:9
相关论文
共 50 条
  • [41] Physics-informed Gaussian process regression of in operando capacitance for carbon supercapacitors
    Pan, Runtong
    Gu, Mengyang
    Wu, Jianzhong
    ENERGY ADVANCES, 2023, 2 (06): : 843 - 853
  • [42] Long Short-Term Memory Neural Networks for Modeling Dynamical Processes and Predictive Control: A Hybrid Physics-Informed Approach
    Zarzycki, Krzysztof
    Lawrynczuk, Maciej
    SENSORS, 2023, 23 (21)
  • [43] Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network
    Lu Z.
    Qu J.
    Liu H.
    He C.
    Zhang B.
    Chen Q.
    Huagong Xuebao/CIESC Journal, 2021, 72 (03): : 1496 - 1503
  • [44] Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
    Shuheng Liao
    Tianju Xue
    Jihoon Jeong
    Samantha Webster
    Kornel Ehmann
    Jian Cao
    Computational Mechanics, 2023, 72 : 499 - 512
  • [45] Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
    Liao, Shuheng
    Xue, Tianju
    Jeong, Jihoon
    Webster, Samantha
    Ehmann, Kornel
    Cao, Jian
    COMPUTATIONAL MECHANICS, 2023, 72 (03) : 499 - 512
  • [46] Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
    Tondo, Gledson Rodrigo
    Kavrakov, Igor
    Morgenthal, Guido
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 225
  • [47] Error homogenization in physics-informed neural networks for modeling in manufacturing
    Cooper, Clayton
    Zhang, Jianjing
    Gao, Robert X.
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 298 - 308
  • [48] Physics-informed neural networks for the Reynolds equation with cavitation modeling
    Rom, Michael
    TRIBOLOGY INTERNATIONAL, 2023, 179
  • [49] On the Application of Physics-Informed Neural Networks in the Modeling of Roll Waves
    Martins da Silva, Bruno Fagherazzi
    Rocho, Valdirene da Rosa
    Dorn, Marcio
    Fiorot, Guilherme Henrique
    ADVANCES IN HYDROINFORMATICS, VOL 2, SIMHYDRO 2023, 2024, : 89 - 106
  • [50] Boosting Personalized Musculoskeletal Modeling With Physics-Informed Knowledge Transfer
    Zhang, Jie
    Zhao, Yihui
    Bao, Tianzhe
    Li, Zhenhong
    Qian, Kun
    Frangi, Alejandro F.
    Xie, Sheng Quan
    Zhang, Zhi-Qiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72