Modeling Electrically Long Interconnects Using Physics-Informed Delayed Gaussian Processes

被引:5
|
作者
Garbuglia, Federico [1 ]
Reuschel, Torsten [2 ]
Schuster, Christian
Deschrijver, Dirk [1 ]
Dhaene, Tom [1 ]
Spina, Domenico [1 ,3 ,4 ]
机构
[1] Univ Ghent, Dept Informat Technol, Imec, B-9052 Ghent, Belgium
[2] Univ New Brunswick UNB, Dept Phys, Fredericton, NB E3B 5A3, Canada
[3] Hamburg Univ Technol TUHH, Inst Theoret Elekrotechn, D-21079 Hamburg, Germany
[4] Vrije Univ Brussel VUB, Dept ELEC, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Kernel; Scattering parameters; Data models; Computational modeling; Transforms; Estimation; Propagation delay; Delay estimation; Gabor transform; Gaussian processes (GP); interconnects; kernels; machine learning (ML); S-parameters;
D O I
10.1109/TEMC.2023.3317917
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a machine learning technique to model wide-band scattering parameters (S-parameters) of interconnects in the frequency domain using a new Gaussian processes (GP) model. Standard GPs with a general-purpose kernel typically assume high smoothness and therefore are not suitable to model S-parameters that are highly dynamic and oscillating due to propagation delays. The new delayed Gaussian process (tau GP) model employs a physics-informed kernel consisting of periodic components, whose fundamental frequencies are interpreted as tunable propagation delays. Then, the model hyperparameters are tuned using a combination of maximum marginal likelihood estimation (MMLE) and delay estimation using Gabor transform. The delay estimation allows one to automatically identify the optimal fundamental frequencies for the kernel, thus increasing the numerical stability of the hyperparameters tuning process. The resulting delayed Gaussian process model accurately predicts the S-parameter values at desired frequency points in the training interval. Two application examples demonstrate the increased accuracy of the new technique, compared to standard Gaussian processes, vector fitting (VF), and delayed vector fitting (DVF) rational models.
引用
收藏
页码:1715 / 1723
页数:9
相关论文
共 50 条
  • [31] Physics-informed Supervised Residual Learning for Electromagnetic Modeling
    Shan, Tao
    Song, Xiaoqian
    Guo, Rui
    Li, Maokun
    Yang, Fan
    Xu, Shenheng
    2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2021,
  • [32] Physics-Informed Neural Networks with skip connections for modeling and
    Kittelsen, Jonas Ekeland
    Antonelo, Eric Aislan
    Camponogara, Eduardo
    Imsland, Lars Struen
    APPLIED SOFT COMPUTING, 2024, 158
  • [33] Using Physics-Informed Neural Networks (PINNs) for Tumor Cell Growth Modeling
    Rodrigues, Jose Alberto
    MATHEMATICS, 2024, 12 (08)
  • [34] Flight Dynamic Uncertainty Quantification Modeling Using Physics-Informed Neural Networks
    Michek, Nathaniel E.
    Mehta, Piyush
    Huebsch, Wade W.
    AIAA JOURNAL, 2024, 62 (11) : 4234 - 4246
  • [35] Modeling and Control of a Chemical Process Network Using Physics-Informed Transfer Learning
    Xiao, Ming
    Wu, Zhe
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (42) : 17216 - 17227
  • [36] Inverse modeling of nonisothermal multiphase poromechanics using physics-informed neural networks
    Amini, Danial
    Haghighat, Ehsan
    Juanes, Ruben
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490
  • [37] Modeling global surface dust deposition using physics-informed neural networks
    Catricheo, Constanza A. Molina
    Lambert, Fabrice
    Salomon, Julien
    van 't Wout, Elwin
    COMMUNICATIONS EARTH & ENVIRONMENT, 2024, 5 (01):
  • [38] Physics-informed machine learning modeling for predictive control using noisy data
    Alhajeri, Mohammed S.
    Abdullah, Fahim
    Wu, Zhe
    Christofides, Panagiotis D.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 186 : 34 - 49
  • [39] Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems
    Nevin, Josh W.
    Vaquero-Caballero, F. J.
    Ives, David J.
    Savory, Seb J.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (21) : 6833 - 6844
  • [40] Tool wear monitoring based on physics-informed Gaussian process regression
    Sun, Mingjian
    Wang, Xianding
    Guo, Kai
    Huang, Xiaoming
    Sun, Jie
    Li, Duo
    Huang, Tao
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 77 : 40 - 61