Modeling Electrically Long Interconnects Using Physics-Informed Delayed Gaussian Processes

被引:5
|
作者
Garbuglia, Federico [1 ]
Reuschel, Torsten [2 ]
Schuster, Christian
Deschrijver, Dirk [1 ]
Dhaene, Tom [1 ]
Spina, Domenico [1 ,3 ,4 ]
机构
[1] Univ Ghent, Dept Informat Technol, Imec, B-9052 Ghent, Belgium
[2] Univ New Brunswick UNB, Dept Phys, Fredericton, NB E3B 5A3, Canada
[3] Hamburg Univ Technol TUHH, Inst Theoret Elekrotechn, D-21079 Hamburg, Germany
[4] Vrije Univ Brussel VUB, Dept ELEC, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Kernel; Scattering parameters; Data models; Computational modeling; Transforms; Estimation; Propagation delay; Delay estimation; Gabor transform; Gaussian processes (GP); interconnects; kernels; machine learning (ML); S-parameters;
D O I
10.1109/TEMC.2023.3317917
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a machine learning technique to model wide-band scattering parameters (S-parameters) of interconnects in the frequency domain using a new Gaussian processes (GP) model. Standard GPs with a general-purpose kernel typically assume high smoothness and therefore are not suitable to model S-parameters that are highly dynamic and oscillating due to propagation delays. The new delayed Gaussian process (tau GP) model employs a physics-informed kernel consisting of periodic components, whose fundamental frequencies are interpreted as tunable propagation delays. Then, the model hyperparameters are tuned using a combination of maximum marginal likelihood estimation (MMLE) and delay estimation using Gabor transform. The delay estimation allows one to automatically identify the optimal fundamental frequencies for the kernel, thus increasing the numerical stability of the hyperparameters tuning process. The resulting delayed Gaussian process model accurately predicts the S-parameter values at desired frequency points in the training interval. Two application examples demonstrate the increased accuracy of the new technique, compared to standard Gaussian processes, vector fitting (VF), and delayed vector fitting (DVF) rational models.
引用
收藏
页码:1715 / 1723
页数:9
相关论文
共 50 条
  • [1] Stokesian processes : inferring Stokes flows using physics-informed Gaussian processes
    Molina, John J.
    Ogawa, Kenta
    Taniguchi, Takashi
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [2] A spectrum of physics-informed Gaussian processes for regression in engineering
    Cross, Elizabeth J.
    Rogers, Timothy J.
    Pitchforth, Daniel J.
    Gibson, Samuel J.
    Zhang, Sikai
    Jones, Matthew R.
    DATA-CENTRIC ENGINEERING, 2024, 5
  • [3] Urban Flood Modeling: Uncertainty Quantification and Physics-Informed Gaussian Processes Regression Forecasting
    Kohanpur, Amir H.
    Saksena, Siddharth
    Dey, Sayan
    Johnson, J. Michael
    Riasi, M. Sadegh
    Yeghiazarian, Lilit
    Tartakovsky, Alexandre M.
    WATER RESOURCES RESEARCH, 2023, 59 (03)
  • [4] Simultaneous and meshfree topology optimization with physics-informed Gaussian processes
    Yousefpour, Amin
    Hosseinmardi, Shirin
    Mora, Carlos
    Bostanabad, Ramin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 437
  • [5] Constraining Gaussian processes for physics-informed acoustic emission mapping
    Jones, M. R.
    Rogers, T. J.
    Cross, E. J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 188
  • [6] Physics-informed Gaussian process probabilistic modeling with multi-source data for prognostics of degradation processes
    Jiang, Chen
    Zhong, Teng
    Choi, Hyunhee
    Youn, Byeng D.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 258
  • [7] Hall-Effect Sensor Design With Physics-Informed Gaussian Process Modeling
    Xu, Yanwen
    Lalwani, Anand Vikas
    Arora, Kanika
    Zheng, Zhuoyuan
    Renteria, Anabel
    Senesky, Debbie G. G.
    Wang, Pingfeng
    IEEE SENSORS JOURNAL, 2022, 22 (23) : 22519 - 22528
  • [8] Physics-informed Gaussian process for tool wear prediction
    Zhu, Kunpeng
    Huang, Chengyi
    Li, Si
    Lin, Xin
    ISA TRANSACTIONS, 2023, 143 : 548 - 556
  • [9] Informative Path Planning Using Physics-Informed Gaussian Processes for Aerial Mapping of 5G Networks
    Gruner, Jonas F.
    Grasshoff, Jan
    Wembers, Carlos Castelar
    Schweppe, Kilian
    Schildbach, Georg
    Rostalski, Philipp
    SENSORS, 2024, 24 (23)
  • [10] Physics-informed recurrent neural network modeling for predictive control of nonlinear processes✩
    Zheng, Yingzhe
    Hu, Cheng
    Wang, Xiaonan
    Wu, Zhe
    JOURNAL OF PROCESS CONTROL, 2023, 128