On the zeros of the partial sums of the Fibonacci zeta function

被引:1
|
作者
Mora, G. [1 ]
机构
[1] Univ Nacl Asunc, Fac Ciencias Exactas & Nat, Campus Univ San Lorenzo, San Lorenzo, Paraguay
关键词
Zeros of exponential polynomials; Fibonacci numbers; Henry bounds; ANALYTIC CONTINUATION;
D O I
10.1007/s13398-023-01471-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the partial sums ?(n)(s), n > 2, of the series that defines the Fibonacci zeta function ?(s) := (En=1Fn-s)-F-8 , s ? C, Rs> 0 (F(n )are the Fibonacci numbers), have infinitely many zeros in non-symmetrical vertical strips with respect to the imaginary axis. Using two theorems of Carmichael and Bohr, we prove that the Henry lower bounds ?(n) corresponding to ?(n)(s) coincide with a(n) := inf {Rs : ?(n) (s) = 0} for n > 12. As for the Henry upper bounds, we show that the limit lim(n?8) ?0,(n) exists and is the unique positive real number ? such that ?(?) = 4. Its approximate value is 0, 7570549496906548985355124.... Finally, we prove that lim(n?8) a(n) = - log(f) 2, where f is the golden ratio. As a consequence, all the zeros of all ?n (s) lie essentially in the bounded vertical strip determined by the lines Rs = - log(f )2 and Rs = ?.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On the zeros of the partial sums of the Fibonacci zeta function
    G. Mora
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [2] Zeros of partial sums of the Riemann zeta function
    Borwein, Peter
    Fee, Greg
    Ferguson, Ron
    van der Waall, Alexa
    [J]. EXPERIMENTAL MATHEMATICS, 2007, 16 (01) : 21 - 39
  • [3] Computing the zeros of the partial sums of the Riemann zeta function
    Mora, G.
    Sepulcre, J. M.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (05) : 1499 - 1504
  • [4] Zeros of Partial Sums of the Riemann Zeta-Function
    Gonek, Steven M.
    Ledoan, Andrew H.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (10) : 1775 - 1791
  • [5] Computing the zeros of the partial sums of the Riemann zeta function
    G. Mora
    J. M. Sepulcre
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1499 - 1504
  • [6] Zeros of Partial Sums of the Square of the Riemann Zeta-Function
    Crosby, Kathryn
    Eliseo, Jordan
    Ledoan, Andrew
    Mazowiecki, David
    [J]. COLLABORATIVE MATHEMATICS AND STATISTICS RESEARCH, 2015, 109 : 51 - 65
  • [7] Zeros of partial sums of the Dedekind zeta function of a cyclotomic field
    Ledoan, Andrew
    Roy, Arindam
    Zaharescu, Alexandru
    [J]. JOURNAL OF NUMBER THEORY, 2014, 136 : 118 - 133
  • [8] On the asymptotically uniform distribution of the zeros of the partial sums of the Riemann zeta function
    Mora, G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (01) : 120 - 128
  • [9] A note on the real projection of the zeros of partial sums of Riemann zeta function
    Dubon, E.
    Mora, G.
    Sepulcre, J. M.
    Ubeda, J. I.
    Vidal, T.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 317 - 333
  • [10] ZEROS OF PARTIAL SUMS OF DIRICHLET SERIES FOR RIEMANNIAN ZETA-FUNCTION
    VORONIN, SM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1974, 216 (05): : 964 - 967