On the zeros of the partial sums of the Fibonacci zeta function

被引:0
|
作者
G. Mora
机构
[1] Universidad Nacional de Asunción,Facultad de Ciencias Exactas y Naturales
[2] Campus Universitario de San Lorenzo,undefined
关键词
Zeros of exponential polynomials; Fibonacci numbers; Henry bounds; 30B50; 11M41; 30D05;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that the partial sums φn(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{n}(s)$$\end{document}, n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document}, of the series that defines the Fibonacci zeta function φ(s):=∑n=1∞Fn-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (s):=\sum _{n=1}^{\infty }F_{n}^{-s}$$\end{document}, s∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in \mathbb {C} $$\end{document}, ℜs>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Re s>0$$\end{document} (Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{n}$$\end{document} are the Fibonacci numbers), have infinitely many zeros in non-symmetrical vertical strips with respect to the imaginary axis. Using two theorems of Carmichael and Bohr, we prove that the Henry lower bounds ρn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho _{n}$$\end{document} corresponding to φn(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{n}(s)$$\end{document} coincide with an:=infℜs:φn(s)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{n}:=\inf \left\{ \Re s:\varphi _{n}(s)=0\right\} $$\end{document} for n>12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>12$$\end{document}. As for the Henry upper bounds, we show that the limit limn→∞ρ0,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }\rho _{0,n}$$\end{document} exists and is the unique positive real number η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} such that φ(η)=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\eta )=4$$\end{document}. Its approximate value is 0,7570549496906548985355124…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,7570549496906548985355124\ldots $$\end{document}. Finally, we prove that limn→∞an=-logϕ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }a_{n}=-\log _{\phi }2$$\end{document}, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is the golden ratio. As a consequence, all the zeros of all φn(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varphi _{n}(s)$$\end{document} lie essentially in the bounded vertical strip determined by the lines ℜs=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Re s=$$\end{document}-logϕ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\log _{\phi }2$$\end{document} and ℜs=η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Re s=\eta $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On the zeros of the partial sums of the Fibonacci zeta function
    Mora, G.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [2] Zeros of partial sums of the Riemann zeta function
    Borwein, Peter
    Fee, Greg
    Ferguson, Ron
    van der Waall, Alexa
    [J]. EXPERIMENTAL MATHEMATICS, 2007, 16 (01) : 21 - 39
  • [3] Computing the zeros of the partial sums of the Riemann zeta function
    Mora, G.
    Sepulcre, J. M.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (05) : 1499 - 1504
  • [4] Zeros of Partial Sums of the Riemann Zeta-Function
    Gonek, Steven M.
    Ledoan, Andrew H.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (10) : 1775 - 1791
  • [5] Computing the zeros of the partial sums of the Riemann zeta function
    G. Mora
    J. M. Sepulcre
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1499 - 1504
  • [6] Zeros of Partial Sums of the Square of the Riemann Zeta-Function
    Crosby, Kathryn
    Eliseo, Jordan
    Ledoan, Andrew
    Mazowiecki, David
    [J]. COLLABORATIVE MATHEMATICS AND STATISTICS RESEARCH, 2015, 109 : 51 - 65
  • [7] Zeros of partial sums of the Dedekind zeta function of a cyclotomic field
    Ledoan, Andrew
    Roy, Arindam
    Zaharescu, Alexandru
    [J]. JOURNAL OF NUMBER THEORY, 2014, 136 : 118 - 133
  • [8] On the asymptotically uniform distribution of the zeros of the partial sums of the Riemann zeta function
    Mora, G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (01) : 120 - 128
  • [9] A note on the real projection of the zeros of partial sums of Riemann zeta function
    Dubon, E.
    Mora, G.
    Sepulcre, J. M.
    Ubeda, J. I.
    Vidal, T.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 317 - 333
  • [10] ZEROS OF PARTIAL SUMS OF DIRICHLET SERIES FOR RIEMANNIAN ZETA-FUNCTION
    VORONIN, SM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1974, 216 (05): : 964 - 967