On the zeros of the partial sums of the Fibonacci zeta function

被引:1
|
作者
Mora, G. [1 ]
机构
[1] Univ Nacl Asunc, Fac Ciencias Exactas & Nat, Campus Univ San Lorenzo, San Lorenzo, Paraguay
关键词
Zeros of exponential polynomials; Fibonacci numbers; Henry bounds; ANALYTIC CONTINUATION;
D O I
10.1007/s13398-023-01471-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the partial sums ?(n)(s), n > 2, of the series that defines the Fibonacci zeta function ?(s) := (En=1Fn-s)-F-8 , s ? C, Rs> 0 (F(n )are the Fibonacci numbers), have infinitely many zeros in non-symmetrical vertical strips with respect to the imaginary axis. Using two theorems of Carmichael and Bohr, we prove that the Henry lower bounds ?(n) corresponding to ?(n)(s) coincide with a(n) := inf {Rs : ?(n) (s) = 0} for n > 12. As for the Henry upper bounds, we show that the limit lim(n?8) ?0,(n) exists and is the unique positive real number ? such that ?(?) = 4. Its approximate value is 0, 7570549496906548985355124.... Finally, we prove that lim(n?8) a(n) = - log(f) 2, where f is the golden ratio. As a consequence, all the zeros of all ?n (s) lie essentially in the bounded vertical strip determined by the lines Rs = - log(f )2 and Rs = ?.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Fibonacci Partial Sums Tricks
    Byrapuram, Nikhil
    Ge, Adam
    Ge, Selena
    Lee, Sylvia Zia
    Mandal, Rajarshi
    Redwine, Gordon
    Samanta, Soham
    Wu, Daniel
    Xu, Danyang
    Zhao, Ray
    Khovanova, Tanya
    [J]. arXiv,
  • [22] TRANSCENDENTAL SUMS RELATED TO THE ZEROS OF ZETA FUNCTIONS
    Gun, Sanoli
    Murty, M. Ram
    Rath, Purusottam
    [J]. MATHEMATIKA, 2018, 64 (03) : 875 - 897
  • [23] Density Intervals of Zeros of the Partial Sums of the Dirichlet Eta Function
    Mora, G.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (06)
  • [24] Density Intervals of Zeros of the Partial Sums of the Dirichlet Eta Function
    G. Mora
    [J]. Mediterranean Journal of Mathematics, 2018, 15
  • [25] PARTIAL SUMS OF ZEROS OF A POLYNOMIAL
    MIRSKY, L
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1962, 13 (50): : 151 - +
  • [26] On zeros of the function zeta(s)
    Cudakov, NG
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1936, 10 : 201 - 204
  • [27] ZEROS OF THE ESTERMANN ZETA FUNCTION
    Dubickas, A.
    Garunkstis, R.
    Steuding, J.
    Steuding, R.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 94 (01) : 38 - 49
  • [28] ON ZEROS OF EPSTEINS ZETA FUNCTION
    STARK, HM
    [J]. MATHEMATIKA, 1967, 14 (27P1) : 47 - &
  • [29] THE SIXTH POWER MOMENT OF PARTIAL RIEMANN ZETA FUNCTION AND KLOOSTERMAN SUMS
    Iwaniec, Henryk
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2024, 71 (01)
  • [30] The zeros of the partial sums of the exponential series
    Walker, P
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (04): : 337 - 339