Discontinuous Galerkin Method Based on the Reduced Space for the Nonlinear Convection-Diffusion-Reaction Equation

被引:0
|
作者
Hou, Shijin [1 ]
Xia, Yinhua [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Reduced discontinuous Galerkin space; Legendre moments; Local discontinuous Galerkin method; Unsteady convection-diffusion-reaction equation; CONSERVATION;
D O I
10.1007/s10915-024-02486-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by introducing a reconstruction operator based on the Legendre moments, we construct a reduced discontinuous Galerkin (RDG) space that could achieve the same approximation accuracy but using fewer degrees of freedom (DoFs) than the standard discontinuous Galerkin (DG) space. The design of the "narrow-stencil-based" reconstruction operator can preserve the local data structure property of the high-order DG methods. With the RDG space, we apply the local discontinuous Galerkin (LDG) method with the implicit-explicit time marching for the nonlinear unsteady convection-diffusion-reaction equation, where the reduction of the number of DoFs allows us to achieve higher efficiency. In terms of theoretical analysis, we give the well-posedness and approximation properties for the reconstruction operator and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} error estimate for the semi-discrete LDG scheme. Several representative numerical tests demonstrate the accuracy and the performance of the proposed method in capturing the layers.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems
    Feistauer, Miloslav
    Hajek, Jaroslav
    Svadlenka, Karel
    APPLICATIONS OF MATHEMATICS, 2007, 52 (03) : 197 - 233
  • [22] Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems
    Ern, Alexandre
    Stephansen, Annette F.
    Vohralik, Martin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) : 114 - 130
  • [23] A staggered discontinuous Galerkin method for the convection-diffusion equation
    Chung, E.
    Lee, C. S.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (01) : 1 - 31
  • [24] Virtual Element Method for Nonlinear Time-Dependent Convection-Diffusion-Reaction Equation
    Arrutselvi M.
    Natarajan E.
    Computational Mathematics and Modeling, 2021, 32 (3) : 376 - 386
  • [25] RBF-based meshless local Petrov Galerkin method for the multi-dimensional convection-diffusion-reaction equation
    Li, Jingwei
    Feng, Xinlong
    He, Yinnian
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 98 : 46 - 53
  • [26] A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations
    Qingfang Liu
    Yanren Hou
    Lei Ding
    Qingchang Liu
    Acta Applicandae Mathematicae, 2014, 130 : 115 - 134
  • [27] Discontinuous Galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems
    Ahmed, N.
    Matthies, G.
    Tobiska, L.
    Xie, H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) : 1747 - 1756
  • [28] Stability of Nonlinear Convection–Diffusion–Reaction Systems in Discontinuous Galerkin Methods
    C. Michoski
    A. Alexanderian
    C. Paillet
    E. J. Kubatko
    C. Dawson
    Journal of Scientific Computing, 2017, 70 : 516 - 550
  • [29] A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations
    Liu, Qingfang
    Hou, Yanren
    Ding, Lei
    Liu, Qingchang
    ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 115 - 134
  • [30] On solvability of inverse coefficient problems for nonlinear convection-diffusion-reaction equation
    Brizitskii, R. V.
    Saritskaya, Zh Yu
    ALL-RUSSIAN CONFERENCE ON NONLINEAR WAVES: THEORY AND NEW APPLICATIONS (WAVE16), 2016, 722