ADHD/CD-NET: automated EEG-based characterization of ADHD and CD using explainable deep neural network technique

被引:4
|
作者
Loh, Hui Wen [1 ]
Ooi, Chui Ping [1 ]
Oh, Shu Lih [2 ]
Barua, Prabal Datta [2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Tan, Yi Ren [11 ]
Acharya, U. Rajendra [12 ,13 ,14 ]
Fung, Daniel Shuen Sheng [11 ,15 ]
机构
[1] Singapore Univ Social Sci, Sch Sci & Technol, Singapore, Singapore
[2] Cogninet Australia, Sydney, NSW 2010, Australia
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[4] Univ Southern Queensland, Sch Business Informat Syst, Darling Hts, Australia
[5] Australian Int Inst Higher Educ, Sydney, NSW 2000, Australia
[6] Univ New England, Sch Sci & Technol, Armidale, Australia
[7] Taylors Univ, Sch Biosci, Selangor, Malaysia
[8] SRM Inst Sci & Technol, Sch Comp, Kattankulathur, India
[9] Kumamoto Univ, Sch Sci & Technol, Kumamoto, Japan
[10] Univ Sydney, Sydney Sch Educ & Social Work, Camperdown, Australia
[11] Inst Mental Hlth, Dev Psychiat, Singapore, Singapore
[12] Univ Southern Queensland, Fac Business Educ Law & Arts, Sch Business Informat Syst, Darling Hts, Australia
[13] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Australia
[14] Univ Southern Queensland, Ctr Hlth Res, Springfield, Australia
[15] Nanyang Technol Univ, Natl Univ Singapore, Yong Loo Lin Sch Med, Duke NUS Med Sch,Lee Kong Chian Sch Med, Singapore, Singapore
关键词
Explainable artificial intelligence (XAI); Deep learning; ADHD; Conduct disorder; Grad-CAM; CNN; EEG; DEFICIT HYPERACTIVITY DISORDER; ARTIFICIAL-INTELLIGENCE; CONDUCT PROBLEMS; SUBSTANCE USE; CHILDREN; DIAGNOSIS; FEATURES; COMORBIDITY; MEDICATION; CHILDHOOD;
D O I
10.1007/s11571-023-10028-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, distinguishing them is difficult, thus increasing the risk of misdiagnosis. It is crucial that these two conditions are not mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were then used to train the convolutional neural network (CNN) model, and the model's performance was evaluated using 10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations for the prediction result made by the 'black box' CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental health professionals and clinicians to consider when making a diagnosis.
引用
收藏
页码:1609 / 1625
页数:17
相关论文
共 50 条
  • [21] High Dimensional Convolutional Neural Network for EEG Connectivity-Based Diagnosis of ADHD
    Mafi M.
    Radfar S.
    Journal of Biomedical Physics and Engineering, 2022, 12 (06): : 645 - 654
  • [22] AGL-Net: An Efficient Neural Network for EEG-Based Driver Fatigue Detection
    Fang, Weijie
    Tang, Liren
    Pan, Jiahui
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2023, 22 (06)
  • [23] A Combination of Deep Neural Network and Fuzzy Clustering for EEG-Based Alcoholism Diagnosis
    Junhua Mei
    Yanlin Yi
    Journal of The Institution of Engineers (India): Series B, 2025, 106 (2) : 661 - 670
  • [24] Nuclear Norm Regularized Deep Neural Network for EEG-Based Emotion Recognition
    Liang, Shuang
    Yin, Mingbo
    Huang, Yecheng
    Dai, Xiubin
    Wang, Qiong
    FRONTIERS IN PSYCHOLOGY, 2022, 13
  • [25] VIGNet: A Deep Convolutional Neural Network for EEG-based Driver Vigilance Estimation
    Ko, Wonjun
    Oh, Kwanseok
    Jeon, Eunjin
    Suk, Heung-Il
    2020 8TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2020, : 34 - 36
  • [26] EEG-Based ADHD Classification Using Autoencoder Feature Extraction and ResNet with Double Augmented Attention Mechanism
    Bansal, Jayoti
    Gangwar, Gaurav
    Aljaidi, Mohammad
    Alkoradees, Ali
    Singh, Gagandeep
    BRAIN SCIENCES, 2025, 15 (01)
  • [27] Automated EEG-based language detection using directed quantum pattern technique
    Dogan, Sengul
    Tuncer, Turker
    Barua, Prabal Datta
    Acharya, U. R.
    APPLIED SOFT COMPUTING, 2024, 167
  • [28] EEG classification of ADHD and normal children using non-linear features and neural network
    Mohammadi M.R.
    Khaleghi A.
    Nasrabadi A.M.
    Rafieivand S.
    Begol M.
    Zarafshan H.
    Biomedical Engineering Letters, 2016, 6 (2) : 66 - 73
  • [29] EEG-based mild depression recognition using convolutional neural network
    Xiaowei Li
    Rong La
    Ying Wang
    Junhong Niu
    Shuai Zeng
    Shuting Sun
    Jing Zhu
    Medical & Biological Engineering & Computing, 2019, 57 : 1341 - 1352
  • [30] EEG-based Classification of Drivers Attention using Convolutional Neural Network
    Atilla, Fred
    Alimardani, Maryam
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2021, : 59 - 62