ADHD/CD-NET: automated EEG-based characterization of ADHD and CD using explainable deep neural network technique

被引:4
|
作者
Loh, Hui Wen [1 ]
Ooi, Chui Ping [1 ]
Oh, Shu Lih [2 ]
Barua, Prabal Datta [2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Tan, Yi Ren [11 ]
Acharya, U. Rajendra [12 ,13 ,14 ]
Fung, Daniel Shuen Sheng [11 ,15 ]
机构
[1] Singapore Univ Social Sci, Sch Sci & Technol, Singapore, Singapore
[2] Cogninet Australia, Sydney, NSW 2010, Australia
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[4] Univ Southern Queensland, Sch Business Informat Syst, Darling Hts, Australia
[5] Australian Int Inst Higher Educ, Sydney, NSW 2000, Australia
[6] Univ New England, Sch Sci & Technol, Armidale, Australia
[7] Taylors Univ, Sch Biosci, Selangor, Malaysia
[8] SRM Inst Sci & Technol, Sch Comp, Kattankulathur, India
[9] Kumamoto Univ, Sch Sci & Technol, Kumamoto, Japan
[10] Univ Sydney, Sydney Sch Educ & Social Work, Camperdown, Australia
[11] Inst Mental Hlth, Dev Psychiat, Singapore, Singapore
[12] Univ Southern Queensland, Fac Business Educ Law & Arts, Sch Business Informat Syst, Darling Hts, Australia
[13] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Australia
[14] Univ Southern Queensland, Ctr Hlth Res, Springfield, Australia
[15] Nanyang Technol Univ, Natl Univ Singapore, Yong Loo Lin Sch Med, Duke NUS Med Sch,Lee Kong Chian Sch Med, Singapore, Singapore
关键词
Explainable artificial intelligence (XAI); Deep learning; ADHD; Conduct disorder; Grad-CAM; CNN; EEG; DEFICIT HYPERACTIVITY DISORDER; ARTIFICIAL-INTELLIGENCE; CONDUCT PROBLEMS; SUBSTANCE USE; CHILDREN; DIAGNOSIS; FEATURES; COMORBIDITY; MEDICATION; CHILDHOOD;
D O I
10.1007/s11571-023-10028-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, distinguishing them is difficult, thus increasing the risk of misdiagnosis. It is crucial that these two conditions are not mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were then used to train the convolutional neural network (CNN) model, and the model's performance was evaluated using 10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations for the prediction result made by the 'black box' CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental health professionals and clinicians to consider when making a diagnosis.
引用
收藏
页码:1609 / 1625
页数:17
相关论文
共 50 条
  • [11] CD-NET: HISTOPATHOLOGY REPRESENTATION LEARNING USING CONTEXT-DETAIL TRANSFORMER NETWORK
    Kapse, Saarthak
    Das, Srijan
    Prasanna, Prateek
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [12] Deep Convolutional Neural Network for EEG-Based Motor Decoding
    Zhang, Jing
    Liu, Dong
    Chen, Weihai
    Pei, Zhongcai
    Wang, Jianhua
    MICROMACHINES, 2022, 13 (09)
  • [13] CD-Net: Cascaded 3D Dilated convolutional neural network for pneumonia lesion segmentation
    Zhang, Jinli
    Wang, Shaomeng
    Jiang, Zongli
    Chen, Zhijie
    Bai, Xiaolu
    Computers in Biology and Medicine, 2024, 173
  • [14] Entropy difference-based EEG channel selection technique for automated detection of ADHD
    Maheshwari, Shishir
    Rajesh, Kandala N. V. P. S.
    Kanhangad, Vivek
    Acharya, U. Rajendra
    Kumar, T. Sunil
    PLOS ONE, 2025, 20 (04):
  • [15] An Effective Deep Neural Network Architecture for EEG-Based Recognition of Emotions
    Henni, Khadidja
    Mezghani, Neila
    Mitiche, Amar
    Abou-Abbas, Lina
    Benazza-Ben Yahia, Amel
    IEEE ACCESS, 2025, 13 : 4487 - 4498
  • [16] Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG
    Moghaddari, Majid
    Lighvan, Mina Zolfy
    Danishvar, Sebelan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 197
  • [17] EEG-Based Emotion Classification Using Convolutional Neural Network
    Mei, Han
    Xu, Xiangmin
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 130 - 135
  • [18] EEG-Based User Authentication Using a Convolutional Neural Network
    Yu, Ting
    Wei, Chun-Shu
    Chiang, Kuan-Jung
    Nakanishi, Masaki
    Jung, Tzyy-Ping
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 1011 - 1014
  • [19] EEG-based epileptic seizure detection using binary dragonfly algorithm and deep neural network
    Yogarajan, G.
    Alsubaie, Najah
    Rajasekaran, G.
    Revathi, T.
    Alqahtani, Mohammed S.
    Abbas, Mohamed
    Alshahrani, Madshush M.
    Soufiene, Ben Othman
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [20] EEG-based epileptic seizure detection using binary dragonfly algorithm and deep neural network
    G. Yogarajan
    Najah Alsubaie
    G. Rajasekaran
    T. Revathi
    Mohammed S. Alqahtani
    Mohamed Abbas
    Madshush M. Alshahrani
    Ben Othman Soufiene
    Scientific Reports, 13