Solution of space-time fractional diffusion equation involving fractional Laplacian with a local radial basis function approximation

被引:3
|
作者
Revathy, J. M. [1 ]
Chandhini, G. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Surathkal 575025, India
关键词
Radial basis functions; L1; approximation; Caffarelli-Silvestre extension; Fractional Laplacian;
D O I
10.1007/s40435-023-01237-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Radial basis function-based finite difference (RBF-FD) schemes generalize finite difference methods, providing flexibility in node distribution as well as the shape of the domain. In this paper, we consider a numerical formulation based on RBF-FD for solving a time-space fractional diffusion problem defined using a fractional Laplacian operator. The model problem is simplified into a local problem in space using the Caffarelli-Silvestre extension method. The space derivatives in the resulting problem are then discretized using a local RBF-based finite difference method, while L1 approximation is used for the fractional time derivative. Results obtained using the proposed scheme are then compared with that given in the existing literature.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 50 条
  • [41] Inverse source problem for a space-time fractional diffusion equation
    Mohamed BenSaleh
    Hassine Maatoug
    Ricerche di Matematica, 2024, 73 : 681 - 713
  • [42] A fast algorithm for solving the space-time fractional diffusion equation
    Duo, Siwei
    Ju, Lili
    Zhang, Yanzhi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1929 - 1941
  • [43] Inverse source problem for a space-time fractional diffusion equation
    BenSaleh, Mohamed
    Maatoug, Hassine
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 681 - 713
  • [44] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [45] INVERSE SOURCE PROBLEM FOR A SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 844 - 863
  • [46] Finite element method for space-time fractional diffusion equation
    L. B. Feng
    P. Zhuang
    F. Liu
    I. Turner
    Y. T. Gu
    Numerical Algorithms, 2016, 72 : 749 - 767
  • [47] INverse Source Problem for a Space-Time Fractional Diffusion Equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    Fractional Calculus and Applied Analysis, 2018, 21 : 844 - 863
  • [48] Space-time fractional diffusion equation associated with Jacobi expansions
    Ben Salem, Nejib
    APPLICABLE ANALYSIS, 2023, 102 (02) : 468 - 484
  • [49] ANALYTICAL SOLUTION OF THE SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Abdel-Salam, Emad A-B.
    Yousif, Eltayeb A.
    El-Aasser, Mostafa A.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 19 - 34
  • [50] On the solution of the space-time fractional cubic nonlinear Schrodinger equation
    Yousif, E. A.
    Abdel-Salam, E. A-B.
    El-Aasser, M. A.
    RESULTS IN PHYSICS, 2018, 8 : 702 - 708