Probabilistic investigation into brittle fracture of functionally graded materials using phase-field method

被引:5
|
作者
Aravind, Rajan [1 ,2 ]
Jayakumar, K. [2 ]
Annabattula, Ratna Kumar [1 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Mech Mat Lab, Chennai 600036, India
[2] Indian Space Res Org, Sarabhai Space Ctr, Thiruvananthapuram 695022, India
关键词
Phase-field for fracture; Functionally graded materials; Multivariate model; Probabilistic fracture; Random variables; NONLINEAR FREE-VIBRATION; FINITE-ELEMENT-METHOD; ABAQUS IMPLEMENTATION; CRACK-PROPAGATION; LAMINATED PLATES; MODELS; MECHANICS;
D O I
10.1016/j.engfracmech.2023.109344
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Modelling fracture using numerical techniques based on discrete modelling is complex as it requires tracking of progressing discontinuities in field parameters. Phase-field method for fracture is based on the variational framework and represents discontinuous crack surfaces by a damage variable that diffuses onto the crack surface. This approach offers the advantage of modelling crack where multiple crack nucleation, branching and coalescence can be determined without prior knowledge of the crack path. In this work, a probabilistic approach is used to predict the crack growth response in functionally graded material media when the mechanical properties and geometric parameters are random independent variables. Numerical implemen-tation based on the standard phase-field method is employed in a finite element framework to model crack growth in functionally graded brittle materials. Peak failure loads are estimated within acceptable limits due to dispersion in system properties. Benchmark problems are solved to demonstrate the applicability of this technique. The proposed approach is advantageous as no further intensive computations are needed after the initial evaluation of probabilistic measures for predicting dispersion in fracture propagation when material and geometric properties exhibit scatter.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Adaptive phase-field modeling of dynamic brittle fracture in composite materials
    Li, Weidong
    Nguyen-Thanh, Nhon
    Du, Hejun
    Zhou, Kun
    COMPOSITE STRUCTURES, 2023, 306
  • [22] Phase-field analysis for brittle fracture in ferroelectric materials with flexoelectric effect
    Liu, Chang
    Tan, Yu
    Zhang, Yong
    Liu, Zhaoyi
    Shimada, Takahiro
    Li, Xiangyu
    Wang, Jie
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [23] A phase-field study of crack propagation and branching in functionally graded materials using explicit dynamics
    Dinachandra, Moirangthem
    Alankar, Alankar
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 109
  • [24] Modelling and simulation of fracture in anisotropic brittle materials by the phase-field method with novel strain decompositions
    Vu, B. T.
    Le Quang, H.
    He, Q. C.
    MECHANICS RESEARCH COMMUNICATIONS, 2022, 124
  • [25] Investigation of dynamic fracture behavior in functionally graded materials using the interaction integral method
    Song, Seong Hyeok
    Paulino, Glaucio H.
    MULTISCALE AND FUNCTIONALLY GRADED MATERIALS, 2008, 973 : 254 - +
  • [26] Probabilistic fracture analysis of functionally graded materials - Part I: Uncertainty and probabilistic analysis method
    Song, Junho
    Nguyen, Tam H.
    Paulino, Glaucio H.
    MULTISCALE AND FUNCTIONALLY GRADED MATERIALS, 2008, 973 : 153 - 158
  • [27] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [28] Validation of the Phase-Field Model for Brittle Fracture
    Seles, Karlo
    Tomic, Zoran
    Tonkovic, Zdenko
    Gubeljak, Nenad
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 1721 - 1727
  • [29] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [30] Micro-mechanical analysis of composite materials using Phase-Field models of brittle fracture
    Macias, Juan
    Arteiro, Albertino
    Otero, Fermin
    Camanho, Pedro P.
    Reinoso, Jose
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 102