Fatigue fracture characterization of chemically post-processed electron beam powder bed fusion Ti-6Al-4V

被引:6
|
作者
Sandell, Viktor [1 ]
Akerfeldt, Pia [1 ]
Hansson, Thomas [2 ,3 ]
Antti, Marta-Lena [1 ]
机构
[1] Lulea Univ Technol, Div Mat Sci, S-97187 Lulea, Sweden
[2] GKN Aerosp Engine Syst, S-46138 Trollhattan, Sweden
[3] Univ West, Div Subtract & Addit Mfg, S-46186 Trollhattan, Sweden
关键词
Electron beam powder bed fusion; Fatigue; Defects; Surface condition; Fractography; Chemical post-processing; MECHANICAL-PROPERTIES; SURFACE-ROUGHNESS; DEFECTS; STRENGTH; BEHAVIOR; TI-6A1-4V; EBM; MICROSTRUCTURE; POROSITY; LENS;
D O I
10.1016/j.ijfatigue.2023.107673
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The fatigue behavior of additively manufactured (AM) structural parts is sensitive to the surface and near -surface material conditions. Chemical post-processing surface treatments can be used to improve the surface condition of AM components, including complex geometries with surfaces difficult to access. In this work, surfaces of electron beam powder bed fusion (EB-PBF) produced Ti-6Al-4V were subject to two different chemical post-processing surface treatments, chemical milling and Hirtisation. As-built and machined surfaces, as well as hot isostatic pressing (HIP), treated conditions were also investigated. Fatigue testing was carried out in four-point bending. The investigation focused on the relationship between fracture mechanisms and fatigue life through fractographic study. It was found that a majority of fractures were initiated at internal surface-near defects or defects on the surface. Chemical post-processing was found to smoothen the surface but to leave a surface waviness. Material removal during post-processing could open up internal defects to the treated surface. In HIP-treated specimens, fractures initiated at defects open to the surface. Despite post-processing increasing the mean life of fatigue specimens, no significant improvements in the lowest tested life were observed for any specimen condition.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Surface improvement of laser powder bed fusion processed Ti6Al4V for fatigue applications
    Jurg, Marten
    Medvedev, Alexander E.
    Yan, Wenyi
    Molotnikov, Andrey
    ADDITIVE MANUFACTURING LETTERS, 2022, 3
  • [32] Effect of specimen geometry and orientation on tensile properties of Ti-6Al-4V manufactured by electron beam powder bed fusion
    Shanbhag, Gitanjali
    Wheat, Evan
    Moylan, Shawn
    Vlasea, Mihaela
    ADDITIVE MANUFACTURING, 2021, 48
  • [33] Hybrid Electron Beam Powder Bed Fusion Additive Manufacturing of Ti-6Al-4V: Processing, Microstructure, and Mechanical Properties
    Tosi, R.
    Muzangaza, E.
    Tan, X. P.
    Wimpenny, D.
    Attallah, M. M.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2022, 53 (03): : 927 - 941
  • [34] Solidification texture, variant selection, and phase fraction in a spot-melt electron-beam powder bed fusion processed Ti-6Al-4V
    Kamath, Rakesh R.
    Nandwana, Peeyush
    Ren, Yang
    Choo, Hahn
    ADDITIVE MANUFACTURING, 2021, 46
  • [35] Exploring the duality of powder adhesion and underlying surface roughness in laser powder bed fusion processed Ti-6Al-4V
    Carter, Luke N.
    Villapun, Victor M.
    Grover, Liam
    Cox, Sophie C.
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 81 : 14 - 26
  • [36] Dynamic behavior and thermomechanical characterization of laser powder bed fusion and wrought Ti-6Al-4V
    Salehi, Seyyed-Danial
    Beal, Roger
    Kingstedt, Owen T.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2023, 176
  • [38] High cycle fatigue strength of hot isostatically pressed and chemically etched laser powder bed fusion produced Ti-6Al-4V
    Hills, Michael Andrew
    Malcolm, Jarryd Scott
    Dhansay, Nur Mohamed
    Becker, Thorsten Hermann
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 175
  • [39] Coupling effects of microstructure and defects on the fatigue properties of laser powder bed fusion Ti-6Al-4V
    Qua, Z.
    Zhang, Z. J.
    Zhua, Y. K.
    Liu, R.
    Lu, S. L.
    Li, S. J.
    Duan, Q. Q.
    Zhang, B. N.
    Zhao, M. X.
    Eckert, J.
    Zhang, Z. F.
    ADDITIVE MANUFACTURING, 2023, 61
  • [40] Fatigue properties of Ti-6Al-4V TPMS scaffolds fabricated via laser powder bed fusion
    Tilton, Maryam
    Borjali, Alireza
    Griffis, Jacklyn C.
    Varadarajan, Kartik Mangudi
    Manogharan, Guha P.
    MANUFACTURING LETTERS, 2023, 37 : 32 - 38