Fatigue fracture characterization of chemically post-processed electron beam powder bed fusion Ti-6Al-4V

被引:6
|
作者
Sandell, Viktor [1 ]
Akerfeldt, Pia [1 ]
Hansson, Thomas [2 ,3 ]
Antti, Marta-Lena [1 ]
机构
[1] Lulea Univ Technol, Div Mat Sci, S-97187 Lulea, Sweden
[2] GKN Aerosp Engine Syst, S-46138 Trollhattan, Sweden
[3] Univ West, Div Subtract & Addit Mfg, S-46186 Trollhattan, Sweden
关键词
Electron beam powder bed fusion; Fatigue; Defects; Surface condition; Fractography; Chemical post-processing; MECHANICAL-PROPERTIES; SURFACE-ROUGHNESS; DEFECTS; STRENGTH; BEHAVIOR; TI-6A1-4V; EBM; MICROSTRUCTURE; POROSITY; LENS;
D O I
10.1016/j.ijfatigue.2023.107673
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The fatigue behavior of additively manufactured (AM) structural parts is sensitive to the surface and near -surface material conditions. Chemical post-processing surface treatments can be used to improve the surface condition of AM components, including complex geometries with surfaces difficult to access. In this work, surfaces of electron beam powder bed fusion (EB-PBF) produced Ti-6Al-4V were subject to two different chemical post-processing surface treatments, chemical milling and Hirtisation. As-built and machined surfaces, as well as hot isostatic pressing (HIP), treated conditions were also investigated. Fatigue testing was carried out in four-point bending. The investigation focused on the relationship between fracture mechanisms and fatigue life through fractographic study. It was found that a majority of fractures were initiated at internal surface-near defects or defects on the surface. Chemical post-processing was found to smoothen the surface but to leave a surface waviness. Material removal during post-processing could open up internal defects to the treated surface. In HIP-treated specimens, fractures initiated at defects open to the surface. Despite post-processing increasing the mean life of fatigue specimens, no significant improvements in the lowest tested life were observed for any specimen condition.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fracture toughness of laser-based powder bed fusion produced Ti-6Al-4V
    Louw, D. F.
    Neaves, M.
    Mcduling, C.
    Becker, T. H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 931
  • [22] Effect of Lack of Fusion Formed during Electron Beam Powder Bed Fusion of Ti-6Al-4V Alloy on Impact Toughness
    Mona Aziziderouei
    Zhan Chen
    Timotius Pasang
    Martyn Newby
    Yuan Tao
    Journal of Materials Engineering and Performance, 2020, 29 : 4978 - 4990
  • [23] Effect of Lack of Fusion Formed during Electron Beam Powder Bed Fusion of Ti-6Al-4V Alloy on Impact Toughness
    Aziziderouei, Mona
    Chen, Zhan
    Pasang, Timotius
    Newby, Martyn
    Tao, Yuan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (08) : 4978 - 4990
  • [24] Process variation in Laser Powder Bed Fusion of Ti-6Al-4V
    Chen, Zhuoer
    Wu, Xinhua
    Davies, Chris H. J.
    ADDITIVE MANUFACTURING, 2021, 41
  • [25] Precipitation hardening of laser powder bed fusion Ti-6Al-4V
    Derimow, Nicholas
    Benzing, Jake T.
    Garcia, Jacob
    Levin, Zachary S.
    Lu, Ping
    Moser, Newell
    Beamer, Chad
    Delrio, Frank W.
    Hrabe, Nik
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 921
  • [26] Thermal Conductivity of Ti-6Al-4V in Laser Powder Bed Fusion
    Bartsch, Katharina
    Bossen, Bastian
    Chaudhary, Waqar
    Landry, Michael
    Herzog, Dirk
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8
  • [27] In-situ investigation into the deformation behavior of Ti-6Al-4V processed by laser powder bed fusion
    Liu, Jie
    Zhang, Kai
    Liu, Jianwen
    Xu, Yongfeng
    Zhang, Ruifeng
    Zeng, Zhuoran
    Zhu, Yuman
    Huang, Aijun
    MATERIALS CHARACTERIZATION, 2022, 194
  • [28] Fatigue behavior of low-cost, non-spherical Ti-6Al-4V powder processed via laser powder bed fusion
    Wu, Ziheng
    Rollett, Anthony D.
    Mostafaei, Amir
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2025, : 5177 - 5183
  • [29] Dry sliding wear performance and behaviour of powder bed fusion processed Ti-6Al-4V alloy
    Li, Hua
    Ramezani, Maziar
    Chen, Zhan Wen
    WEAR, 2019, 440
  • [30] The Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V PowderThe Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V PowderMemu, Durlu, and Yagmur
    Firat Memu
    Nuri Durlu
    Aydin Yagmur
    JOM, 2025, 77 (5) : 3906 - 3917